Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14065


Integrins as antimetastatic targets of RGD-independent snake venom components in liver metastasis [corrected]

Rosenow, Felix; Ossig, Rainer; Thormeyer, Dorit; Gasmann, Peter; Schluter, Kerstin; Brunner, Georg; Haier, Jorg; Eble, Johannes A
Metastasis comprises several subsequent steps including local invasion and intravasation at the primary site, then their adhesion/arrest within the vessels of host organs followed by their extravasation and infiltration into the target organ stroma. In contrast to previous studies which have used aspartate-glycine-arginine (RGD) peptides and antibodies against integrins, we used rare collagen- and laminin-antagonizing integrin inhibitors from snake venoms to analyze the colonization of the liver by tumor cells both by intravital microscopy and in vitro. Adhesion of liver-targeting tumor cells to the sinusoid wall components, laminin-1 and fibronectin, is essential for liver metastasis. This step is inhibited by lebein-1, but not by lebein-2 or rhodocetin. Both lebeins from the Vipera lebetina venom block integrin interactions with laminins in an RGD-independent manner. Rhodocetin is an antagonist of alpha2beta1 integrin, a collagen receptor on many tumor cells. Subsequent to tumor cell arrest, extravasation into the liver stroma and micrometastasis are efficiently delayed by rhodocetin. This underlines the importance of alpha2beta1 integrin interaction with the reticular collagen I-rich fibers in liver stroma. Antagonists of laminin- and collagen-binding integrins could be valuable tools to individually block the direct interactions of tumor cells with distinct matrix components of the Disse space, thereby reducing liver metastasis.
PMCID:2244692
PMID: 18283339
ISSN: 1476-5586
CID: 986842

Beta-catenin-dependent Wnt signaling in mandibular bone regeneration

Leucht, Philipp; Kim, Jae-Beom; Helms, Jill A
Osteoblasts are derived from two distinct embryonic lineages: cranial neural crest, and mesoderm. Both populations of cells are capable of forming bone and cartilage during fetal development and during adult bone repair, but whether they use equivalent molecular pathways to achieve osteoblast differentiation is unknown. We addressed this question in the context of cranial repair and focused on the role of Wnt signaling in mandibular skeletal healing. Transgenic Wnt reporter mice were used to pinpoint Wnt-responsive cells in the injury callus, and in situ hybridization was used to identify some of the Wnt ligands expressed by cells during the repair process. A gene transfer technique was employed to abrogate Wnt signaling during mandibular healing, and we found that reparative intramembranous ossification requires a functional Wnt pathway. Finally, we evaluated how constitutive activation of the Wnt pathway, caused by mutation of the LRP5 receptor, affected bone repair in the mandible. Taken together, these data underscore the functional requirement for Wnt signaling in cranial skeletal healing.
PMID: 18292349
ISSN: 1535-1386
CID: 1216372

Effect of anesthesia type on limb length discrepancy after total hip arthroplasty

Sathappan, Sathappan S; Ginat, Daniel; Patel, Vipul; Walsh, Michael; Jaffe, William L; Di Cesare, Paul E
A retrospective study of 132 patients (63 spinal anesthesia and 69 general anesthesia) undergoing total hip arthroplasty was performed by 4 fellowship-trained adult reconstructive surgeons to determine the influence of anesthesia type on postoperative limb length and medial offset. Limb length discrepancy occurred in 87.0% of patients who received regional anesthesia as opposed to 47.6% patients who had general anesthesia (P<.001). Differences in postoperative medial offset measurements between the 2 groups were not statistically significant. It was concluded that surgeons operating on patients who receive regional anesthesia should supplement intraoperative tests for assessing hip stability with meticulous preoperative templating to avoid overlengthening the operative limb
PMID: 18280413
ISSN: 0883-5403
CID: 78022

Expression profiling identifies novel Hh/Gli-regulated genes in developing zebrafish embryos

Bergeron, Sadie A; Milla, Luis A; Villegas, Rosario; Shen, Meng-Chieh; Burgess, Shawn M; Allende, Miguel L; Karlstrom, Rolf O; Palma, Veronica
The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Misregulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants that affect different components of the Hh/Gli signaling system have been identified. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified known (e.g., ptc1 and nkx2.2a) and novel Hh-regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue-specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli-regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of misregulation during tumorigenesis.
PMCID:2683590
PMID: 18055165
ISSN: 1089-8646
CID: 2559302

Type III neuregulin-1 promotes oligodendrocyte myelination

Taveggia, Carla; Thaker, Pratik; Petrylak, Ashley; Caporaso, Gregg L; Toews, Arrel; Falls, Douglas L; Einheber, Steven; Salzer, James L
The axonal signals that regulate oligodendrocyte myelination during development of the central nervous system (CNS) have not been established. In this study, we have examined the regulation of oligodendrocyte myelination by the type III isoform of neuregulin-1 (NRG1), a neuronal signal essential for Schwann cell differentiation and myelination. In contrast to Schwann cells, primary oligodendrocytes differentiate normally when cocultured with dorsal root ganglia (DRG) neurons deficient in type III NRG1. However, they myelinate type III NRG1-deficient neurites poorly in comparison to wild type cultures. Type III NRG1 is not sufficient to drive oligodendrocyte myelination as sympathetic neurons are not myelinated even with lentiviral-mediated expression of NRG1. Mice haploinsufficient for type III NRG1 are hypomyelinated in the brain, as evidenced by reduced amounts of myelin proteins and lipids and thinner myelin sheaths. In contrast, the optic nerve and spinal cord of heterozygotes are myelinated normally. Together, these results implicate type III NRG1 as a significant determinant of the extent of myelination in the brain and demonstrate important regional differences in the control of CNS myelination. They also indicate that oligodendrocyte myelination, but not differentiation, is promoted by axonal NRG1, underscoring important differences in the control of myelination in the CNS and peripheral nervous system (PNS)
PMID: 18080294
ISSN: 0894-1491
CID: 76859

Purified trout egg vitelline envelope proteins VEbeta and VEgamma polymerize into homomeric fibrils from dimers in vitro

Darie, Costel C; Janssen, William G; Litscher, Eveline S; Wassarman, Paul M
The rainbow trout egg vitelline envelope (VE) is composed of three proteins, called VEalpha ( approximately 58-60kDa Mr), VEbeta ( approximately 52kDa Mr), and VEgamma ( approximately 47kDa Mr). Each of these proteins is related to mouse egg zona pellucida (ZP) glycoproteins, called ZP1, ZP2, and ZP3, and possesses a ZP domain that has been implicated in the polymerization of the proteins into long, interconnected fibrils or filaments. Here, trout egg VEbeta and VEgamma were purified to homogeneity and analyzed under various experimental conditions (SDS-PAGE, Blue Native-(BN-)PAGE, size-exclusion chromatography, and transmission electron microscopy) to determine whether individual VE proteins would polymerize into fibrils in vitro. Such analyses revealed that in the presence of 6M urea each VE protein is present primarily as monomers and as small oligomers (dimers, tetramers, etc.). However, either a reduction in urea concentration or a complete removal of urea results in the polymerization of VEbeta and VEgamma dimers into very large oligomers. Mixtures of VEbeta and VEgamma also give rise to large oligomers. Under these conditions, VE proteins are visualized by transmission electron microscopy as aggregates of long fibrils, with each fibril composed of contiguous beads located periodically along the fibril. The relationship between the behavior of fish egg VE proteins and mouse ZP glycoproteins, as well as other ZP domain-containing proteins, is discussed.
PMID: 18067874
ISSN: 0006-3002
CID: 1100062

Analysis of electroblotted proteins by mass spectrometry: protein identification after Western blotting

Luque-Garcia, Jose L; Zhou, Ge; Spellman, Daniel S; Sun, Tung-Tien; Neubert, Thomas A
We describe a new approach for the identification and characterization by mass spectrometry of proteins that have been electroblotted onto nitrocellulose. Using this method (Blotting and Removal of Nitrocellulose (BARN)), proteins can be analyzed either as intact proteins for molecular weight determination or as peptides generated by on-membrane proteolysis. Acetone is used to dissolve the nitrocellulose and to precipitate the adsorbed proteins/peptides, thus removing the nitrocellulose which can interfere with MS analysis. This method offers improved protein coverage, especially for membrane proteins, such as uroplakins, because the extraction step after in-gel digestion is avoided. Moreover, removal of nitrocellulose from the sample solution allows sample analysis by both MALDI- and (LC) ESI-based mass spectrometers. Finally, we demonstrate the utility of BARN for the direct identification of soluble and membrane proteins after Western blotting, obtaining comparable or better results than with in-gel digestion
PMCID:2667373
PMID: 17938404
ISSN: 1535-9484
CID: 76651

An intact unfolded protein response in Trpt1 knockout mice reveals phylogenic divergence in pathways for RNA ligation

Harding, Heather P; Lackey, Jeremy G; Hsu, Hao-Chi; Zhang, Yuhong; Deng, Jing; Xu, Rui-Ming; Damha, Masad J; Ron, David
Unconventional mRNA splicing by an endoplasmic reticulum stress-inducible endoribonuclease, IRE1, is conserved in all known eukaryotes. It controls the expression of a transcription factor, Hac1p/XBP-1, that regulates gene expression in the unfolded protein response. In yeast, the RNA fragments generated by Ire1p are ligated by tRNA ligase (Trl1p) in a process that leaves a 2'-PO4(2-) at the splice junction, which is subsequently removed by an essential 2'-phosphotransferase, Tpt1p. However, animals, unlike yeast, have two RNA ligation/repair pathways that could potentially rejoin the cleaved Xbp-1 mRNA fragments. We report that inactivation of the Trpt1 gene, encoding the only known mammalian homolog of Tpt1p, eliminates all detectable 2'-phosphotransferase activity from cultured mouse cells but has no measurable effect on spliced Xbp-1 translation. Furthermore, the relative translation rates of tyrosine-rich proteins is unaffected by the Trpt1 genotype, suggesting that the pool of (normally spliced) tRNA(Tyr) is fully functional in the Trpt1-/- mouse cells. These observations argue against the presence of a 2'-PO4(2-) at the splice junction of ligated RNA molecules in Trpt1-/- cells, and suggest that Xbp-1 and tRNA ligation proceed by distinct pathways in yeast and mammals
PMCID:2212252
PMID: 18094117
ISSN: 1469-9001
CID: 76337

Surgical images: soft tissue. Necrotizing fasciitis of the abdominal wall [Case Report]

Miller, George; MacLean, Alexandra A; Hiotis, Karen
PMCID:2386313
PMID: 18257161
ISSN: 1488-2310
CID: 76863

Responses of the 27-kDa heat shock protein to UVB irradiation in human epidermal melanocytes

Shi, Biao; Grahn, Jennifer C; Reilly, Debra A; Dizon, Theresa C; Isseroff, R Rivkah
Solar ultraviolet radiation (UVR) is a major environmental hazard for the skin, and UVB (280-320 nm) has been proposed to be a main factor for melanoma development. In response to sunlight exposure, the skin has adapted a number of innate resistance mechanisms. Among them is the small heat shock protein of 27 kDa (HSP27) known to play a role in the protection of cells from variety of environmental insults including UV irradiation. In this study, we demonstrated that UVB irradiation of cultured normal epidermal melanocytes initiates changes in HSP27 phosphorylation and localization. In unstressed melanocytes, HSP27 was present as the non-phosphorylated isoform. UVB irradiation with a physiological dose (7-25 mJ/cm(2)) resulted in the formation of a mono-phosphorylated isoform and sometimes a bi-phosphorylated isoform. The UVB-induced HSP27 phosphorylation was inhibited when melanocytes were treated with the antioxidant N-acetyl cysteine or inhibitor of p38 MAP kinase prior to UVB exposure, suggesting that UVB induced HSP27 phosphorylation through reactive oxygen species/p38 MAP kinase pathway. In response to UBV irradiation, HSP27 in melanocytes translocated from the cytoplasm to the nucleus. The HSP27 responses may provide some protective role against UVB-induced cell damage in the skin
PMID: 18031542
ISSN: 1600-0625
CID: 133038