Searched for: school:SOM
Department/Unit:Cell Biology
Zidovudine inhibits telomere elongation, increases the transposable element LINE-1 copy number and compromises mouse embryo development
Navarro, Paula A; Wang, Fang; Pimentel, Ricardo; Robinson, Leroy George; Berteli, Thalita S; Keefe, David L
PURPOSE/OBJECTIVE:Millions of pregnant, HIV-infected women take reverse transcriptase inhibitors, such as zidovudine (azidothymidine or AZT), during pregnancy. Reverse transcription plays important roles in early development, including regulation of telomere length (TL) and activity of transposable elements (TE). So we evaluated the effects of AZT on embryo development, TL, and copy number of an active TE, Long Interspersed Nuclear Element 1 (LINE-1), during early development in a murine model. DESIGN/METHODS:Experimental study. METHODS:In vivo fertilized mouse zygotes from B6C3F1/B6D2F1 mice were cultured for 48 h in KSOM with no AZT (n = 45), AZT 1 μM (n = 46) or AZT 10 μM (n = 48). TL was measured by single-cell quantitative PCR (SC-pqPCR) and LINE-1 copy number by qPCR. The percentage of morulas at 48 h, TL and LINE-1 copy number were compared among groups. RESULTS:Exposure to AZT 1 μM or 10 μM significantly impairs early embryo development. TL elongates from oocyte to control embryos. TL in AZT 1 μM embryos is shorter than in control embryos. LINE-1 copy number is significantly lower in oocytes than control embryos. AZT 1 μM increases LINE-1 copy number compared to oocytes controls, and AZT 10 μM embryos. CONCLUSION/CONCLUSIONS:AZT at concentrations approaching those used to prevent perinatal HIV transmission compromises mouse embryo development, prevents telomere elongation and increases LINE-1 copy number after 48 h treatment. The impact of these effects on the trajectory of aging of children exposed to AZT early during development deserves further investigation.
PMID: 34669125
ISSN: 1573-4978
CID: 5043322
14-3-3 epsilon is an intracellular component of TNFR2 receptor complex and its activation protects against osteoarthritis
Fu, Wenyu; Hettinghouse, Aubryanna; Chen, Yujianan; Hu, Wenhuo; Ding, Xiang; Chen, Meng; Ding, Yuanjing; Mundra, Jyoti; Song, Wenhao; Liu, Ronghan; Yi, Young-Su; Attur, Mukundan; Samuels, Jonathan; Strauss, Eric; Leucht, Philipp; Schwarzkopf, Ran; Liu, Chuan-Ju
OBJECTIVES/OBJECTIVE:Osteoarthritis (OA) is the most common joint disease; however, the indeterminate nature of mechanisms by which OA develops has restrained advancement of therapeutic targets. TNF signalling has been implicated in the pathogenesis of OA. TNFR1 primarily mediates inflammation, whereas emerging evidences demonstrate that TNFR2 plays an anti-inflammatory and protective role in several diseases and conditions. This study aims to decipher TNFR2 signalling in chondrocytes and OA. METHODS:Biochemical copurification and proteomics screen were performed to isolate the intracellular cofactors of TNFR2 complex. Bulk and single cell RNA-seq were employed to determine 14-3-3 epsilon (14-3-3ε) expression in human normal and OA cartilage. Transcription factor activity screen was used to isolate the transcription factors downstream of TNFR2/14-3-3ε. Various cell-based assays and genetically modified mice with naturally occurring and surgically induced OA were performed to examine the importance of this pathway in chondrocytes and OA. RESULTS:Signalling molecule 14-3-3ε was identified as an intracellular component of TNFR2 complexes in chondrocytes in response to progranulin (PGRN), a growth factor known to protect against OA primarily through activating TNFR2. 14-3-3ε was downregulated in OA and its deficiency deteriorated OA. 14-3-3ε was required for PGRN regulation of chondrocyte metabolism. In addition, both global and chondrocyte-specific deletion of 14-3-3ε largely abolished PGRN's therapeutic effects against OA. Furthermore, PGRN/TNFR2/14-3-3ε signalled through activating extracellular signal-regulated kinase (ERK)-dependent Elk-1 while suppressing nuclear factor kappa B (NF-κB) in chondrocytes. CONCLUSIONS:This study identifies 14-3-3ε as an inducible component of TNFR2 receptor complex in response to PGRN in chondrocytes and presents a previously unrecognised TNFR2 pathway in the pathogenesis of OA.
PMID: 34226187
ISSN: 1468-2060
CID: 4932152
Generation of developmentally competent oocytes and fertile mice from parthenogenetic embryonic stem cells
Tian, Chenglei; Liu, Linlin; Zeng, Ming; Sheng, Xiaoyan; Heng, Dai; Wang, Lingling; Ye, Xiaoying; Keefe, David L; Liu, Lin
Parthenogenetic embryos, created by activation and diploidization of oocytes, arrest at mid-gestation for defective paternal imprints, which impair placental development. Also, viable offspring has not been obtained without genetic manipulation from parthenogenetic embryonic stem cells (pESCs) derived from parthenogenetic embryos, presumably attributable to their aberrant imprinting. We show that an unlimited number of oocytes can be derived from pESCs and produce healthy offspring. Moreover, normal expression of imprinted genes is found in the germ cells and the mice. pESCs exhibited imprinting consistent with exclusively maternal lineage, and higher X-chromosome activation compared to female ESCs derived from the same mouse genetic background. pESCs differentiated into primordial germ cell-like cells (PGCLCs) and formed oocytes following in vivo transplantation into kidney capsule that produced fertile pups and reconstituted ovarian endocrine function. The transcriptome and methylation of imprinted and X-linked genes in pESC-PGCLCs closely resembled those of in vivo produced PGCs, consistent with efficient reprogramming of methylation and genomic imprinting. These results demonstrate that amplification of germ cells through parthenogenesis faithfully maintains maternal imprinting, offering a promising route for deriving functional oocytes and having potential in rebuilding ovarian endocrine function.
PMID: 34845589
ISSN: 1674-8018
CID: 5065492
Author Correction: Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance
Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W; Lee, Ki Buom; Zambirinis, Constantinos P; Pandian, Gautam S D Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K; Ueberheide, Beatrix; Miller, George
PMID: 34845391
ISSN: 1546-170x
CID: 5065482
The evolving view of thermogenic adipocytes - ontogeny, niche and function
Shamsi, Farnaz; Wang, Chih-Hao; Tseng, Yu-Hua
The worldwide incidence of obesity and its sequelae, such as type 2 diabetes mellitus, have reached pandemic levels. Central to the development of these metabolic disorders is adipose tissue. White adipose tissue stores excess energy, whereas brown adipose tissue (BAT) and beige (also known as brite) adipose tissue dissipate energy to generate heat in a process known as thermogenesis. Strategies that activate and expand BAT and beige adipose tissue increase energy expenditure in animal models and offer therapeutic promise to treat obesity. A better understanding of the molecular mechanisms underlying the development of BAT and beige adipose tissue and the activation of thermogenic function is the key to creating practical therapeutic interventions for obesity and metabolic disorders. In this Review, we discuss the regulation of the tissue microenvironment (the adipose niche) and inter-organ communication between BAT and other tissues. We also cover the activation of BAT and beige adipose tissue in response to physiological cues (such as cold exposure, exercise and diet). We highlight advances in harnessing the therapeutic potential of BAT and beige adipose tissue by genetic, pharmacological and cell-based approaches in obesity and metabolic disorders.
PMID: 34625737
ISSN: 1759-5037
CID: 5150602
Single-cell transcriptomics identifies Gadd45b as a regulator of herpesvirus-reactivating neurons
Hu, Hui-Lan; Srinivas, Kalanghad P; Wang, Shuoshuo; Chao, Moses V; Lionnet, Timothee; Mohr, Ian; Wilson, Angus C; Depledge, Daniel P; Huang, Tony T
Single-cell RNA sequencing (scRNA-seq) is a powerful technique for dissecting the complexity of normal and diseased tissues, enabling characterization of cell diversity and heterogeneous phenotypic states in unprecedented detail. However, this technology has been underutilized for exploring the interactions between the host cell and viral pathogens in latently infected cells. Herein, we use scRNA-seq and single-molecule sensitivity fluorescent in situ hybridization (smFISH) technologies to investigate host single-cell transcriptome changes upon the reactivation of a human neurotropic virus, herpes simplex virus-1 (HSV-1). We identify the stress sensor growth arrest and DNA damage-inducible 45 beta (Gadd45b) as a critical antiviral host factor that regulates HSV-1 reactivation events in a subpopulation of latently infected primary neurons. We show that distinct subcellular localization of Gadd45b correlates with the viral late gene expression program, as well as the expression of the viral transcription factor, ICP4. We propose that a hallmark of a "successful" or "aborted" HSV-1 reactivation state in primary neurons is determined by a unique subcellular localization signature of the stress sensor Gadd45b.
PMID: 34842321
ISSN: 1469-3178
CID: 5065412
Pharmacologically controlling protein-protein interactions through epichaperomes for therapeutic vulnerability in cancer
Joshi, Suhasini; Gomes, Erica DaGama; Wang, Tai; Corben, Adriana; Taldone, Tony; Gandu, Srinivasa; Xu, Chao; Sharma, Sahil; Buddaseth, Salma; Yan, Pengrong; Chan, Lon Yin L; Gokce, Askan; Rajasekhar, Vinagolu K; Shrestha, Lisa; Panchal, Palak; Almodovar, Justina; Digwal, Chander S; Rodina, Anna; Merugu, Swathi; Pillarsetty, NagaVaraKishore; Miclea, Vlad; Peter, Radu I; Wang, Wanyan; Ginsberg, Stephen D; Tang, Laura; Mattar, Marissa; de Stanchina, Elisa; Yu, Kenneth H; Lowery, Maeve; Grbovic-Huezo, Olivera; O'Reilly, Eileen M; Janjigian, Yelena; Healey, John H; Jarnagin, William R; Allen, Peter J; Sander, Chris; Erdjument-Bromage, Hediye; Neubert, Thomas A; Leach, Steven D; Chiosis, Gabriela
Cancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours. Further, we can essentially force tumours into interactome hyperconnectivity and maximal protein-protein interaction capacity, a state whereby no rebound pathways can be deployed and where alternative signalling is supressed. This approach therefore primes interactomes to enhance vulnerability and improve treatment efficacy, enabling therapeutics with traditionally poor performance to become highly efficacious. These findings provide proof-of-principle for a paradigm to overcome drug resistance through pharmacologic manipulation of proteome-wide protein-protein interaction networks.
PMID: 34824367
ISSN: 2399-3642
CID: 5063822
"Just in Time": The Role of Cryo-Electron Microscopy in Combating Recent Pandemics
Frank, Joachim
Single-particle cryogenic electron microscopy (cryo-EM), whose full power was not realized until the advent of powerful detectors in 2012, has a unique position as a method of structure determination as it is capable of providing information about not only the structure but also the dynamical features of biomolecules. This information is of special importance in understanding virus-host interaction and explains the crucial role of cryo-EM in the efforts to find vaccinations and cures for pandemics the world has experienced in the past decade.
PMID: 34077195
ISSN: 1520-4995
CID: 4905402
A bipartite element with allele-specific functions safeguards DNA methylation imprints at the Dlk1-Dio3 locus
Aronson, Boaz E; Scourzic, Laurianne; Shah, Veevek; Swanzey, Emily; Kloetgen, Andreas; Polyzos, Alexander; Sinha, Abhishek; Azziz, Annabel; Caspi, Inbal; Li, Jiexi; Pelham-Webb, Bobbie; Glenn, Rachel A; Vierbuchen, Thomas; Wichterle, Hynek; Tsirigos, Aristotelis; Dawlaty, Meelad M; Stadtfeld, Matthias; Apostolou, Effie
Loss of imprinting (LOI) results in severe developmental defects, but the mechanisms preventing LOI remain incompletely understood. Here, we dissect the functional components of the imprinting control region of the essential Dlk1-Dio3 locus (called IG-DMR) in pluripotent stem cells. We demonstrate that the IG-DMR consists of two antagonistic elements: a paternally methylated CpG island that prevents recruitment of TET dioxygenases and a maternally unmethylated non-canonical enhancer that ensures expression of the Gtl2 lncRNA by counteracting de novo DNA methyltransferases. Genetic or epigenetic editing of these elements leads to distinct LOI phenotypes with characteristic alternations of allele-specific gene expression, DNA methylation, and 3D chromatin topology. Although repression of the Gtl2 promoter results in dysregulated imprinting, the stability of LOI phenotypes depends on the IG-DMR, suggesting a functional hierarchy. These findings establish the IG-DMR as a bipartite control element that maintains imprinting by allele-specific restriction of the DNA (de)methylation machinery.
PMID: 34710357
ISSN: 1878-1551
CID: 5042672
In vivo targeted DamID identifies CHD8 genomic targets in fetal mouse brain
Wade, A Ayanna; van den Ameele, Jelle; Cheetham, Seth W; Yakob, Rebecca; Brand, Andrea H; Nord, Alex S
Genetic studies of autism have revealed causal roles for chromatin remodeling gene mutations. Chromodomain helicase DNA binding protein 8 (CHD8) encodes a chromatin remodeler with significant de novo mutation rates in sporadic autism. However, relationships between CHD8 genomic function and autism-relevant biology remain poorly elucidated. Published studies utilizing ChIP-seq to map CHD8 protein-DNA interactions have high variability, consistent with technical challenges and limitations associated with this method. Thus, complementary approaches are needed to establish CHD8 genomic targets and regulatory functions in developing brain. We used in utero CHD8 Targeted DamID followed by sequencing (TaDa-seq) to characterize CHD8 binding in embryonic mouse cortex. CHD8 TaDa-seq reproduced interaction patterns observed from ChIP-seq and further highlighted CHD8 distal interactions associated with neuronal loci. This study establishes TaDa-seq as a useful alternative for mapping protein-DNA interactions in vivo and provides insights into the regulatory targets of CHD8 and autism-relevant pathophysiology associated with CHD8 mutations.
PMCID:8551073
PMID: 34746699
ISSN: 2589-0042
CID: 5193562