Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14166


Positive selection acting on splicing motifs reflects compensatory evolution

Ke, Shengdong; Zhang, Xiang H-F; Chasin, Lawrence A
We have used comparative genomics to characterize the evolutionary behavior of predicted splicing regulatory motifs. Using base substitution rates in intronic regions as a calibrator for neutral change, we found a strong avoidance of synonymous substitutions that disrupt predicted exonic splicing enhancers or create predicted exonic splicing silencers. These results attest to the functionality of the hexameric motif set used and suggest that they are subject to purifying selection. We also found that synonymous substitutions in constitutive exons tend to create exonic splicing enhancers and to disrupt exonic splicing silencers, implying positive selection for these splicing promoting events. We present evidence that this positive selection is the result of splicing-positive events compensating for splicing-negative events as well as for mutations that weaken splice-site sequences. Such compensatory events include nonsynonymous mutations, synonymous mutations, and mutations at splice sites. Compensation was also seen from the fact that orthologous exons tend to maintain the same number of predicted splicing motifs. Our data fit a splicing compensation model of exon evolution, in which selection for splicing-positive mutations takes place to counter the effect of an ongoing splicing-negative mutational process, with the exon as a whole being conserved as a unit of splicing. In the course of this analysis, we observed that synonymous positions in general are conserved relative to intronic sequences, suggesting that messenger RNA molecules are rich in sequence information for functions beyond protein coding and splicing.
PMCID:2279241
PMID: 18204002
ISSN: 1088-9051
CID: 524182

Appearance of new tetraspanin genes during vertebrate evolution

Garcia-Espana, Antonio; Chung, Pei-Jung; Sarkar, Indra Neil; Stiner, Eric; Sun, Tung-Tien; Desalle, Rob
A detailed phylogenetic analysis of tetraspanins from 10 fully sequenced metazoan genomes and several fungal and protist genomes gives insight into their evolutionary origins and organization. Our analysis suggests that the superfamily can be divided into four large families. These four families-the CD family, CD63 family, uroplakin family, and RDS family-are further classified as consisting of several ortholog groups. The clustering of several ortholog groups together, such as the CD9/Tsp2/CD81 cluster, suggests functional relatedness of those ortholog groups. The fact that our studies are based on whole genome analysis enabled us to estimate not only the phylogenetic relationships among the tetraspanins, but also the first appearance in the tree of life of certain tetraspanin ortholog groups. Taken together, our data suggest that the tetraspanins are derived from a single (or a few) ancestral gene(s) through sequence divergence, rather than convergence, and that the majority of tetraspanins found in the human genome are vertebrate (21 instances), tetrapod (4 instances), or mammalian (6 instances) inventions
PMID: 18291621
ISSN: 1089-8646
CID: 115884

Phosphorylation of liver X receptor alpha selectively regulates target gene expression in macrophages

Torra, Ines Pineda; Ismaili, Naima; Feig, Jonathan E; Xu, Chong-Feng; Cavasotto, Claudio; Pancratov, Raluca; Rogatsky, Inez; Neubert, Thomas A; Fisher, Edward A; Garabedian, Michael J
Dysregulation of liver X receptor alpha (LXRalpha) activity has been linked to cardiovascular and metabolic diseases. Here, we show that LXRalpha target gene selectivity is achieved by modulation of LXRalpha phosphorylation. Under basal conditions, LXRalpha is phosphorylated at S198; phosphorylation is enhanced by LXR ligands and reduced both by casein kinase 2 (CK2) inhibitors and by activation of its heterodimeric partner RXR with 9-cis-retinoic acid (9cRA). Expression of some (AIM and LPL), but not other (ABCA1 or SREBPc1) established LXR target genes is increased in RAW 264.7 cells expressing the LXRalpha S198A phosphorylation-deficient mutant compared to those with WT receptors. Surprisingly, a gene normally not expressed in macrophages, the chemokine CCL24, is activated specifically in cells expressing LXRalpha S198A. Furthermore, inhibition of S198 phosphorylation by 9cRA or by a CK2 inhibitor similarly promotes CCL24 expression, thereby phenocopying the S198A mutation. Thus, our findings reveal a previously unrecognized role for phosphorylation in restricting the repertoire of LXRalpha-responsive genes
PMCID:2293109
PMID: 18250151
ISSN: 1098-5549
CID: 76646

Activated Kras, but not Hras or Nras, may initiate tumors of endodermal origin via stem cell expansion

Quinlan, Margaret P; Quatela, Steven E; Philips, Mark R; Settleman, Jeffrey
The three closely related human Ras genes, Hras, Nras, and Kras, are all widely expressed, engage a common set of downstream effectors, and can each exhibit oncogenic activity. However, the vast majority of activating Ras mutations in human tumors involve Kras. Moreover, Kras mutations are most frequently seen in tumors of endodermally derived tissues (lung, pancreas, and colon), suggesting that activated Kras may affect an endodermal progenitor to initiate oncogenesis. Using a culture model of retinoic acid (RA)-induced stem cell differentiation to endoderm, we determined that while activated HrasV12 promotes differentiation and growth arrest in these endodermal progenitors, KrasV12 promotes their proliferation. Furthermore, KrasV12-expressing endodermal progenitors fail to differentiate upon RA treatment and continue to proliferate and maintain stem cell characteristics. NrasV12 neither promotes nor prevents differentiation. A structure-function analysis demonstrated that these distinct effects of the Ras isoforms involve their variable C-terminal domains, implicating compartmentalized signaling, and revealed a requirement for several established Ras effectors. These findings indicate that activated Ras isoforms exert profoundly different effects on endodermal progenitors and that mutant Kras may initiate tumorigenesis by expanding a susceptible stem/progenitor cell population. These results potentially explain the high frequency of Kras mutations in tumors of endodermal origin
PMCID:2293097
PMID: 18268007
ISSN: 1098-5549
CID: 133405

Rapid detection of triazole antifungal resistance in Aspergillus fumigatus

Garcia-Effron, Guillermo; Dilger, Amanda; Alcazar-Fuoli, Laura; Park, Steven; Mellado, Emilia; Perlin, David S
Triazole resistance in Aspergillus fumigatus is an uncommon but rising phenomenon. Susceptibility testing is rarely performed and can take 48 h or longer, which is an impediment to effective therapy. Molecular diagnostic probing of well-defined resistance mechanisms, which serve as surrogate markers, provides an alternative approach to rapidly (within hours) and efficiently identify resistant strains. The mechanisms of triazole resistance in A. fumigatus are limited to amino acid substitutions in the drug target Cyp51A and include amino acid substitutions at the positions Gly 54, Gly 138, Met 220, and Leu 98, coupled with a tandem repetition in the gene promoter. We report the development of a real-time PCR assay utilizing molecular beacons to assess triazole resistance markers in A. fumigatus. When combined in a multiplex platform, the assay provides a comprehensive evaluation of drug resistance in A. fumigatus.
PMCID:2292958
PMID: 18234874
ISSN: 0095-1137
CID: 310162

Signaling defects in anti-tumor T cells

Frey, Alan B; Monu, Ngozi
The immune response to cancer has been long recognized, including both innate and adaptive responses, showing that the immune system can recognize protein products of genetic and epigenetic changes in transformed cells. The accumulation of antigen-specific T cells within the tumor, the draining lymph node, and the circulation, either in newly diagnosed patients or resultant from experimental immunotherapy, proves that tumors produce antigens and that priming occurs. Unfortunately, just as obviously, tumors grow, implying that anti-tumor immune responses are either not sufficiently vigorous to eliminate the cancer or that anti-tumor immunity is suppressed. Both possibilities are supported by current data. In experimental animal models of cancer and also in patients, systemic immunity is usually not dramatically suppressed, because tumor-bearing animals and patients develop T-cell-dependent immune responses to microbes and to either model antigens or experimental cancer vaccines. However, inhibition of specific anti-tumor immunity is common, and several possible explanations of tolerance to tumor antigens or tumor-induced immunesuppression have been proposed. Inhibition of effective anti-tumor immunity results from the tumor or the host response to tumor growth, inhibiting the activation, differentiation, or function of anti-tumor immune cells. As a consequence, anti-tumor T cells cannot respond productively to developmental, targeting, or activation cues. While able to enhance the number and phenotype of anti-tumor T cells, the modest success of immunotherapy has shown the necessity to attempt to reverse tolerance in anti-tumor T cells, and the vanguard of experimental therapy now focuses on vaccination in combination with blockade of immunosuppressive mechanisms. This review discusses several potential mechanisms by which anti-tumor T cells may be inhibited in function
PMCID:3731145
PMID: 18364003
ISSN: 1600-065X
CID: 92674

Calsyntenins Are Secretory Granule Proteins in Anterior Pituitary Gland and Pancreatic Islet {alpha} Cells

Rindler, Michael J; Xu, Chong-Feng; Gumper, Iwona; Cen, Chuan; Sonderegger, Peter; Neubert, Thomas A
Calsyntenins are members of the cadherin superfamily of cell adhesion molecules. They are present in postsynaptic membranes of excitatory neurons and in vesicles in transit to neuronal growth cones. In the current study, calsyntenin-1 (CST-1) and calsyntenin-3 (CST-3) were identified by mass spectrometric analysis (LC-MS/MS) of integral membrane proteins from highly enriched secretory granule preparations from bovine anterior pituitary gland. Immunofluorescence microscopy on thin frozen sections of rat pituitary revealed that CST-1 was present only in gonadotropes where it colocalized with follicle-stimulating hormone in secretory granules. In contrast, CST-3 was present not only in gonadotrope secretory granules but also in those of somatotropes and thyrotropes. Neither protein was detected in mammatropes. In addition, CST-1 was also localized to the glucagon-containing secretory granules of alpha cells in the pancreatic islets of Langerhans. Results indicate that calsyntenins function outside the nervous system and potentially are modulators of endocrine function
PMCID:2326105
PMID: 18158283
ISSN: 0022-1554
CID: 76650

Diabetes increases p53-mediated apoptosis following ischemia

Jazayeri, Leila; Callaghan, Matthew J; Grogan, Raymon H; Hamou, Cynthia D; Thanik, Vishal; Ingraham, Christopher R; Capell, Brian C; Pelo, Catherine R; Gurtner, Geoffrey C
BACKGROUND: Diabetes impairs the ability of tissue to respond adequately to ischemia. The underlying mechanisms contributing to this impaired response remain unknown. Because increases in apoptosis have been linked to a spectrum of diabetic complications, the authors examined whether programmed cell death is involved in the pathogenesis of poor diabetic tissue responses to ischemia. METHODS: Analysis for apoptosis and levels of proaptotic protein, p53, were performed on streptozocin-induced diabetic mice and wild-type controls in a murine model of soft-tissue ischemia (n = 6). In vitro, chronic hyperglycemic culture conditions were used to test inducibility and reversibility of the diabetic phenotype. Small interfering RNA was used to assess the role of p53. RESULTS: Ischemia-induced apoptosis and p53 levels were increased significantly in diabetic dermal fibroblasts both in vivo and in vitro. Chronic hyperglycemic culture was sufficient to induce the increased apoptotic phenotype, and this was not reversible with long-term normoglycemic conditions. Blocking p53 with small interfering RNA resulted in significant protection against ischemic apoptosis. CONCLUSIONS: These findings suggest that diabetes causes an increased apoptotic response to ischemia through a p53-mediated mechanism. This increase is not reversible by exposure to low-glucose conditions. This suggests that glycemic control alone will be unable to prevent tissue necrosis in diabetic patients and suggests novel therapeutic strategies for this condition
PMID: 18349630
ISSN: 1529-4242
CID: 96567

Toward verified biological models

Sadot, Avital; Fisher, Jasmin; Barak, Dan; Admanit, Yishai; Stern, Michael J; Hubbard, E Jane Albert; Harel, David
The last several decades have witnessed a vast accumulation of biological data and data analysis. Many of these data sets represent only a small fraction of the system's behavior, making the visualization of full system behavior difficult. A more complete understanding of a biological system is gained when different types of data (and/or conclusions drawn from the data) are integrated into a larger-scale representation or model of the system. Ideally, this type of model is consistent with all available data about the system, and it is then used to generate additional hypotheses to be tested. Computer-based methods intended to formulate models that integrate various events and to test the consistency of these models with respect to the laboratory-based observations on which they are based are potentially very useful. In addition, in contrast to informal models, the consistency of such formal computer-based models with laboratory data can be tested rigorously by methods of formal verification. We combined two formal modeling approaches in computer science that were originally developed for non-biological system design. One is the inter-object approach using the language of live sequence charts (LSCs) with the Play-Engine tool, and the other is the intra-object approach using the language of statecharts and Rhapsody as the tool. Integration is carried out using InterPlay, a simulation engine coordinator. Using these tools, we constructed a combined model comprising three modules. One module represents the early lineage of the somatic gonad of C. elegans in LSCs, while a second more detailed module in statecharts represents an interaction between two cells within this lineage that determine their developmental outcome. Using the advantages of the tools, we created a third module representing a set of key experimental data using LSCs. We tested the combined statechart-LSC model by showing that the simulations were consistent with the set of experimental LSCs. This small-scale modular example demonstrates the potential for using similar approaches for verification by exhaustive testing of models by LSCs. It also shows the advantages of these approaches for modeling biology
PMID: 18451431
ISSN: 1545-5963
CID: 90878

Persistent induction of hepatic and pulmonary phase II enzymes by 3-methylcholanthrene in rats

Kondraganti, Sudha R; Jiang, Weiwu; Jaiswal, Anil K; Moorthy, Bhagavatula
We reported earlier that exposure of rats to 3-methylcholanthrene (MC) causes sustained induction of hepatic cytochrome P450 (CYP)1A expression for up to 45 days by mechanisms other than persistence of the parent MC (Moorthy, J. 2000. Pharmacology. Exp. Ther. 294, 313-322). The CYP1A genes are members of the Ah gene battery that also encode CYP1B1 and phase II enzymes such as glutathione S-transferase (GST-alpha), UDP glucuronyl transferase (UGT)1A, NAD(P)H (nicotinamide adenine dinucleotide phosphate, reduced):quinone oxidoreductase I (NQO1), aldehyde dehydrogenase (ALDH), etc. Therefore, in this investigation, we tested the hypothesis that MC elicits persistent induction of CYP1B1 and phase II genes, which are in part regulated by the Ah receptor (AHR). Female Sprague-Dawley rats were treated with MC (100 mumol/kg), ip, once daily for 4 days, and expression of CYP1B1 and several phase II (e.g., GST-alpha, NQO1) genes and their corresponding proteins were determined in lung and liver. The major finding was that MC persistently induced (3- to 10-fold) the expression of several phase II enzymes, including GST-alpha, NQO1, UGT1A1, ALDH, and epoxide hydrolase in both tissues for up to 28 days. However, MC did not elicit sustained induction of CYP1B1. Our results thus support the hypothesis that MC elicits coordinated and sustained induction of phase II genes presumably via persistent activation of the AHR, a phenomenon that may have implications for chemical-induced carcinogenesis and chemopreventive strategies in humans.
PMCID:3758893
PMID: 18203689
ISSN: 1096-0929
CID: 989322