Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13474


The relationship between attention deficit hyperactivity disorder and child temperament

Foley, M; McClowry, SG; Castellanos, FX
This study examined empirical and theoretical differences and similarities between attention deficit hyperactivity disorder (ADHD) and child temperament in 32 ADHD children aged 6-11 years, and a comparison group of 23 children with similar sociodemographic characteristics. Children were assessed for ADHD symptoms (hyperactivity, impulsivity, and inattention) and dimensions of child temperament (negative reactivity, task persistence, activity, attentional focusing, impulsivity, and inhibitory control) using standardized parent reports and interviews. Symptoms of ADHD and temperament dimensions were correlated; children in the ADHD group had significantly higher scores on negative reactivity, activity and impulsivity, and lower scores on task persistence, attentional focusing and inhibitory control than normative samples. Results indicate that although the constructs of ADHD and temperament have been regarded as two separate bodies of knowledge, theoretical and empirical overlaps exist. Applied implications are discussed. (C) 2007 Elsevier Inc. All rights reserved
ISI:000255670700006
ISSN: 0193-3973
CID: 79105

Cystinuria

Mattoo, Aditya; Goldfarb, David S
Cystinuria is an inherited disorder characterized by the impaired reabsorption of cystine in the proximal tubule of the nephron and the gastrointestinal epithelium. The only clinically significant manifestation is recurrent nephrolithiasis secondary to the poor solubility of cystine in urine. Although cystinuria is a relatively common disorder, it accounts for no more than 1% of all urinary tract stones. Thus far, mutations in 2 genes, SLC3A1 and SLC7A9, have been identified as being responsible for most cases of cystinuria by encoding defective subunits of the cystine transporter. With the discovery of mutated genes, the classification of patients with cystinuria has been changed from one based on phenotypes (I, II, III) to one based on the affected genes (I and non-type I; or A and B). Most often this classification can be used without gene sequencing by determining whether the affected individual's parents have abnormal urinary cystine excretion. Clinically, insoluble cystine precipitates into hexagonal crystals that can coalesce into larger, recurrent calculi. Prevention of stone formation is the primary goal of management and includes hydration, dietary restriction of salt and animal protein, urinary alkalinization, and cystine-binding thiol drugs
PMID: 18359399
ISSN: 0270-9295
CID: 76372

Anti-Ca2+ channel antibody attenuates Ca2+ currents and mimics cerebellar ataxia in vivo

Liao, Yaping Joyce; Safa, Parsa; Chen, Yi-Ren; Sobel, Raymond A; Boyden, Edward S; Tsien, Richard W
Voltage-gated Ca(2+) channels (VGCCs) are membrane proteins that determine the activity and survival of neurons, and mutations in the P/Q-type VGCCs are known to cause cerebellar ataxia. VGCC dysfunction may also underlie acquired peripheral and central nervous system diseases associated with small-cell lung cancer, including Lambert-Eaton myasthenic syndrome (LEMS) and paraneoplastic cerebellar ataxia (PCA). The pathogenic role of anti-VGCC antibody in LEMS is well established. Although anti-VGCC antibody is also found in a significant fraction of PCA patients, its contribution to PCA is unclear. Using a polyclonal peptide antibody against a major immunogenic region in P/Q-type VGCCs (the extracellular Domain-III S5-S6 loop), we demonstrated that such antibody was sufficient to inhibit VGCC function in neuronal and recombinant VGCCs, alter cerebellar synaptic transmission, and confer the phenotype of cerebellar ataxia. Our data support the hypothesis that anti-VGCC antibody may play a significant role in the pathogenesis of cerebellar dysfunction in PCA
PMCID:2268200
PMID: 18272482
ISSN: 1091-6490
CID: 136730

High thalamocortical theta coherence in patients with neurogenic pain

Sarnthein, Johannes; Jeanmonod, Daniel
Patients with severe and chronic neurogenic pain are known to exhibit excess EEG oscillations in the 4- to 9-Hz theta frequency band in comparison with healthy controls. The generators of these excess EEG oscillations are localized in the cortical pain matrix. Since cortex and thalamus are tightly interconnected anatomically, we asked how thalamic activity and EEG are functionally related in these patients. During the surgical intervention in ten patients with neurogenic pain, local field potentials were recorded from the posterior part of the central lateral nucleus (CL). The highest thalamocortical coherence was found in the 4- to 9-Hz theta frequency band (median 7.7 Hz). The magnitude of thalamocortical theta coherence was comparable to the magnitude of EEG coherence between scalp electrode pairs. Median thalamocortical theta coherence was 27%, reached up to 68% and was maximal with frontal midline scalp sites. The observed high thalamocortical coherence underlines the importance of the thalamus for the synchronization of scalp EEG. We discuss the pathophysiology within the framework of a dysrhythmic thalamocortical interplay, which has important consequences for the choice of therapeutic strategy in patients with chronic and severe forms of neurogenic pain
PMID: 18060808
ISSN: 1053-8119
CID: 142842

New section titled Evolution of Developmental Control Mechanisms

Bronner-Fraser, Marianne; Davidson, Eric; Desplan, Claude; Shankland, Marty
SCOPUS:38849086716
ISSN: 0012-1606
CID: 2813162

Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice

Yuan, Aidong; Kumar, Asok; Peterhoff, Corrinne; Duff, Karen; Nixon, Ralph A
Elevated tau expression has been proposed as a possible basis for impaired axonal transport in Alzheimer's disease. To address this hypothesis, we analyzed the movement of pulse radiolabeled proteins in vivo along retinal ganglion cell (RGC) axons of mice that lack tau or overexpress human tau isoforms. Here, we show that the global axonal transport rates of slow and fast transport cargoes in axons are not significantly impaired when tau expression is eliminated or increased. In addition, markers of slow transport (neurofilament light subunit) and fast transport (snap25) do not accumulate in retinas and are distributed normally along optic axons in mice that lack or overexpress tau. Finally, ultrastructural analyses revealed no abnormal accumulations of vesicular organelles or neurofilaments in RGC perikarya or axons in mice overexpressing or lacking tau. These results suggest that tau is not essential for axonal transport and that transport rates in vivo are not significantly affected by substantial fluctuations in tau expression
PMCID:2814454
PMID: 18272688
ISSN: 1529-2401
CID: 94106

The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels

Barrett, Curtis F; Tsien, Richard W
Calcium entry into excitable cells is an important physiological signal, supported by and highly sensitive to the activity of voltage-gated Ca2+ channels. After membrane depolarization, Ca2+ channels first open but then undergo various forms of negative feedback regulation including voltage- and calcium-dependent inactivation (VDI and CDI, respectively). Inactivation of Ca2+ channel activity is perturbed in a rare yet devastating disorder known as Timothy syndrome (TS), whose features include autism or autism spectrum disorder along with severe cardiac arrhythmia and developmental abnormalities. Most cases of TS arise from a sporadic single nucleotide change that generates a mutation (G406R) in the pore-forming subunit of the L-type Ca2+ channel Ca(V)1.2. We found that the TS mutation powerfully and selectively slows VDI while sparing or possibly speeding the kinetics of CDI. The deceleration of VDI was observed when the L-type channels were expressed with beta1 subunits prominent in brain, as well as beta2 subunits of importance for the heart. Dissociation of VDI and CDI was further substantiated by measurements of Ca2+ channel gating currents and by analysis of another channel mutation (I1624A) that hastens VDI, acting upstream of the step involving Gly406. As highlighted by the TS mutation, CDI does not proceed to completeness but levels off at approximately 50%, consistent with a change in gating modes and not an absorbing inactivation process. Thus, the TS mutation offers a unique perspective on mechanisms of inactivation as well as a promising starting point for exploring the underlying pathophysiology of autism
PMCID:2538892
PMID: 18250309
ISSN: 1091-6490
CID: 136731

MEG event-related desynchronization and synchronization deficits during basic somatosensory processing in individuals with ADHD

Dockstader, Colleen; Gaetz, William; Cheyne, Douglas; Wang, Frank; Castellanos, F Xavier; Tannock, Rosemary
ABSTRACT: BACKGROUND: Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent, complex disorder which is characterized by symptoms of inattention, hyperactivity, and impulsivity. Convergent evidence from neurobiological studies of ADHD identifies dysfunction in fronto-striatal-cerebellar circuitry as the source of behavioural deficits. Recent studies have shown that regions governing basic sensory processing, such as the somatosensory cortex, show abnormalities in those with ADHD suggesting that these processes may also be compromised. METHODS: We used event-related magnetoencephalography (MEG) to examine patterns of cortical rhythms in the primary (SI) and secondary (SII) somatosensory cortices in response to median nerve stimulation, in 9 adults with ADHD and 10 healthy controls. Stimuli were brief (0.2 ms) non-painful electrical pulses presented to the median nerve in two counterbalanced conditions: unpredictable and predictable stimulus presentation. We measured changes in strength, synchronicity, and frequency of cortical rhythms. RESULTS: Healthy comparison group showed strong event-related desynchrony and synchrony in SI and SII. By contrast, those with ADHD showed significantly weaker event-related desynchrony and event-related synchrony in the alpha (8-12 Hz) and beta (15-30 Hz) bands, respectively. This was most striking during random presentation of median nerve stimulation. Adults with ADHD showed significantly shorter duration of beta rebound in both SI and SII except for when the onset of the stimulus event could be predicted. In this case, the rhythmicity of SI (but not SII) in the ADHD group did not differ from that of controls. CONCLUSION: Our findings suggest that somatosensory processing is altered in individuals with ADHD. MEG constitutes a promising approach to profiling patterns of neural activity during the processing of sensory input (e.g., detection of a tactile stimulus, stimulus predictability) and facilitating our understanding of how basic sensory processing may underlie and/or be influenced by more complex neural networks involved in higher order processing
PMCID:2266931
PMID: 18269747
ISSN: 1744-9081
CID: 76815

Functional and pharmacological characterization of a Shal-related K+ channel subunit in Zebrafish

Nakamura, Tomoe Y; Coetzee, William A
BACKGROUND: K+ channels are diverse; both in terms of their function and their molecular composition. Shal subunits were first described in Drosophila. There are three mammalian orthologs, which are members of the Kv4 subfamily. They are involved in neuronal firing patterns as well as control of the cardiac action potential duration. RESULTS: Here, we report the biophysical and pharmacological characterization of zShal3, which is the ortholog of the mammalian Kv4.3 subunit, which in mammals is involved in action potential repolarization and gives rise to neuronal A-type K+ currents involved in somatodendretic signal integration. CONCLUSION: We demonstrate that zShal has similar functional and pharmacological characteristics compared to Kv4.3 and it is similarly regulated by pharmacological agents and by the Kv4 accessory subunit, NCS-1
PMCID:2270284
PMID: 18261223
ISSN: 1472-6793
CID: 79131

Pyramidal neurons grow up and change their mind

Fishell, Gord; Hanashima, Carina
The precise stereotypic projections of pyramidal neurons within the six-layered cortex of mammals are key in allowing this structure to attain its high level of function. Recent studies have provided the first indications that postmitotic transcription factors are required for the formation and maintenance of both corticofugal and intracortical pyramidal cell populations. Here, we discuss these new findings in the context of our present understanding of cortical cell specification
PMID: 18255026
ISSN: 0896-6273
CID: 78689