Searched for: school:SOM
Department/Unit:Cell Biology
S1P and LPA have an attachment-dependent regulatory effect on invasion of epithelial ovarian cancer cells
Smicun, Yoel; Gil, Orlando; Devine, Kate; Fishman, David A
OBJECTIVES: We previously demonstrated the regulation of epithelial ovarian cancer (EOC) cell invasiveness by the bioactive phospholipid sphingosine 1-phosphate (S1P). Low-dose S1P stimulated invasion like lysophosphatidic acid (LPA), while high-dose S1P inhibited invasion. Here we investigate how cell attachment status affects response to S1P and examine the effects of S1P and LPA on cell-cell and cell-extracellular matrix (ECM) adhesion. METHODS: EOC Dov13 cell invasion, ECM attachment and cell adhesion were tested through in vitro assays of Matrigel invasion and attachment to Matrigel, collagen or cell monolayer. Fractionated membrane and cytoplasmic proteins and biotin-labeled surface proteins were analyzed by western analysis. Actin cytoskeleton and FAK were visualized by immunofluorescence. RESULTS: S1P (20 muM) inhibited invasion of sustained, attached cells but enhanced that of invading cells. Membrane N-cadherin was depleted upon reattachment to ECM. S1P pretreatment (20 muM) accelerated N-cadherin recovery, while 40 muM LPA or 0.5 muM S1P delayed recovery. Cell-cell adhesion and stress fibers were decreased by LPA and by 0.5 muM S1P but increased by 20 muM S1P. While S1P increased cellular attachment to Matrigel and collagen-I, LPA inhibited attachment to Matrigel. Surface N-cadherin, gamma- and beta-catenins, FAK and integrinbeta1 were altered by both reattachment and treatment with S1P or LPA. CONCLUSIONS: S1P inversely affects invasion of attached and invading cells, switching from inhibition to stimulation. This switch is associated with depletion of N-cadherin and membrane FAK. The recovery of membrane N-cadherin, change in cell-cell adhesion and actin stress fibers intensity in response to LPA and S1P inversely correlate with their effects on cellular invasiveness
PMID: 17716713
ISSN: 1095-6859
CID: 75369
Principles of the xTAG respiratory viral panel assay (RVP Assay)
Merante, Frank; Yaghoubian, Sevana; Janeczko, Richard
PMID: 18162252
ISSN: 1386-6532
CID: 741482
xTAG RVP assay: analytical and clinical performance
Krunic, Nancy; Yager, Thomas D; Himsworth, David; Merante, Frank; Yaghoubian, Sevana; Janeczko, Richard
PMID: 18162254
ISSN: 1386-6532
CID: 741472
Visualizing in vivo liposomal drug delivery in real-time
Kim, Jae-Beom; Leucht, Philipp; Morrell, Nathan T; Schwettman, H Alan; Helms, Jill A
Liposomes have tremendous potential for efficient small molecule delivery. Previous studies, however, have been hampered by an inability to monitor their distribution and release of contents. Here, the authors demonstrate the real time monitoring of small molecule delivery using luciferin as a model. To monitor the release of luciferin in vivo, luciferin was packaged in thermosensitive liposomes and delivered into transgenic mice that constitutively express luciferase. Their experiments show the thermally induced release of the liposomal content in real time. In addition, the model provides evidence that the thermosensitive liposomes are stable over a long period of time ( approximately 3 weeks), and still release their content upon heating. These data present a strategy to monitor liposomal drug delivery in vivo with luciferin.
PMID: 17968717
ISSN: 1061-186x
CID: 1216542
Kinetic Evidence Is Consistent with the Rocker-Switch Mechanism of Membrane Transport by GlpT
Law, Christopher J; Yang, Qiang; Soudant, Celine; Maloney, Peter C; Wang, Da-Neng
Secondary active transport of substrate across the cell membrane is crucial to many cellular and physiological processes. The crystal structure of one member of the secondary active transporter family, the sn-glycerol-3-phosphate (G3P) transporter (GlpT) of the inner membrane of Escherichia coli, suggests a mechanism for substrate translocation across the membrane that involves a rocker-switch-type movement of the protein. This rocker-switch mechanism makes two specific predictions with respect to kinetic behavior: the transport rate increases with the temperature, whereas the binding affinity of the transporter to a substrate is temperature-independent. In this work, we directly tested these two predictions by transport kinetics and substrate-binding experiments, integrating the data on this single system into a coherent set of observations. The transport kinetics of the physiologically relevant G3P-phosphate antiport reaction were characterized at different temperatures using both E. coli whole cells and GlpT reconstituted into proteoliposomes. Substrate-binding affinity of the transporter was measured using tryptophan fluorescence quenching in detergent solution. Indeed, the substrate transport velocity of GlpT increased dramatically with temperature. In contrast, neither the apparent Michaelis constant (Km) nor the apparent substrate-binding dissociation constant (Kd) showed temperature dependence. Moreover, GlpT-catalyzed G3P translocation exhibited a completely linear Arrhenius function with an activation energy of 35.2 kJ mol-1 for the transporter reconstituted into proteoliposomes, suggesting that the substrate-loaded transporter is delicately poised between the inward- and outward-facing conformations. When these results are taken together, they are in agreement with a rocker-switch mechanism for GlpT
PMCID:2435215
PMID: 17915951
ISSN: 0006-2960
CID: 74677
Inter- and intra-combinatorial regulation by transcription factors and microRNAs
Zhou, Yiming; Ferguson, John; Chang, Joseph T; Kluger, Yuval
BACKGROUND: MicroRNAs (miRNAs) are a novel class of non-coding small RNAs. In mammalian cells, miRNAs repress the translation of messenger RNAs (mRNAs) or degrade mRNAs. miRNAs play important roles in development and differentiation, and they are also implicated in aging, and oncogenesis. Predictions of targets of miRNAs suggest that they may regulate more than one-third of all genes. The overall functions of mammalian miRNAs remain unclear. Combinatorial regulation by transcription factors alone or miRNAs alone offers a wide range of regulatory programs. However, joining transcriptional and post-transcriptional regulatory mechanisms enables higher complexity regulatory programs that in turn could give cells evolutionary advantages. Investigating coordinated regulation of genes by miRNAs and transcription factors (TFs) from a statistical standpoint is a first step that may elucidate some of their roles in various biological processes. RESULTS: Here, we studied the nature and scope of coordination among regulators from the transcriptional and miRNA regulatory layers in the human genome. Our findings are based on genome wide statistical assessment of regulatory associations ('interactions') among the sets of predicted targets of miRNAs and sets of putative targets of transcription factors. We found that combinatorial regulation by transcription factor pairs and miRNA pairs is much more abundant than the combinatorial regulation by TF-miRNA pairs. In addition, many of the strongly interacting TF-miRNA pairs involve a subset of master TF regulators that co-regulate genes in coordination with almost any miRNA. Application of standard measures for evaluating the degree of interaction between pairs of regulators show that strongly interacting TF-miRNA, TF-TF or miRNA-miRNA pairs tend to include TFs or miRNAs that regulate very large numbers of genes. To correct for this potential bias we introduced an additional Bayesian measure that incorporates not only how significant an interaction is but also how strong it is. Putative pairs of regulators selected by this procedure are more likely to have biological coordination. Importantly, we found that the probability of a TF-miRNA pair forming feed forward loops with its common target genes (where the miRNA simultaneously suppresses the TF and many of its targets) is increased for strongly interacting TF-miRNA pairs. CONCLUSION: Genes are more likely to be co-regulated by pairs of TFs or pairs of miRNAs than by pairs of TF-miRNA, perhaps due to higher probability of evolutionary duplication events of shorter DNA sequences. Nevertheless, many gene sets are reciprocally regulated by strongly interacting pairs of TF-miRNA, which suggests an effective mechanism to suppress functionally related proteins. Moreover, the particular type of feed forward loop (with two opposing modes where the TF activates its target genes or the miRNA simultaneously suppresses this TF and the TF-miRNA joint target genes) is more prevalent among strongly interacting TF-miRNA pairs. This may be attributed to a process that prevents waste of cellular resources or a mechanism to accelerate mRNA degradation
PMCID:2206040
PMID: 17971223
ISSN: 1471-2164
CID: 76761
Perfusion fMRI detects deficits in regional CBF during memory-encoding tasks in MCI subjects
Xu, G; Antuono, P G; Jones, J; Xu, Y; Wu, G; Ward, D; Li, S-J
OBJECTIVE:To determine how memory-encoding tasks elicit functional perfusion change in subjects with amnestic mild cognitive impairment (aMCI). METHODS:Twelve subjects with aMCI and 14 age-matched cognitively normal (CN) subjects were recruited for this study. Arterial spin-labeling perfusion MRI (ASL-MRI) was employed to measure regional cerebral blood flow (CBF) during both control and encoding task conditions. RESULTS:Experimental results demonstrated that hypoperfusion occurred in the right precuneus and cuneus in the aMCI group, and not the CN group, during the control state. During the memory-task performance, the difference in these regional hypoperfusion areas extended to the posterior cingulate. These regional perfusion rates correlated with the Mini-Mental State Examination and the Rey Auditory Verbal Learning Test scores. In addition, a CBF percentage increase (22.7%) occurred in the right parahippocampus region during the memory-encoding task performance in the CN group, with approximately no change in the aMCI group. CONCLUSION/CONCLUSIONS:Subjects with amnestic mild cognitive impairment had significant regional cerebral hypoperfusion and lacked the dynamic capability to modulate their regional cerebral blood flow responses to the challenge of the functional tasks.
PMID: 17954780
ISSN: 1526-632x
CID: 3877482
Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB
Wiese, Stefan; Jablonka, Sibylle; Holtmann, Bettina; Orel, Nadiya; Rajagopal, Rithwick; Chao, Moses V; Sendtner, Michael
Neurotrophins are potent survival factors for developing and injured neurons. However, they are not being used to treat neurodegenerative diseases because of difficulties in administration and numerous side effects that have been encountered in previous clinical trials. Their biological activities use Trk (tropomyosin-related kinase) transmembrane tyrosine kinases. Therefore, one alternative approach is to use transactivation pathways such as adenosine 2A receptor agonists, which can activate Trk receptor signaling independent of neurotrophin binding. However, the relevance in vivo and applicability of these transactivation events during neurodegenerative and injury conditions have never been extensively studied. Here we demonstrate that motoneuron survival after facial nerve lesioning is significantly enhanced by transactivation of Trk receptor tyrosine kinases by adenosine agonists. Moreover, survival of motoneurons directly required the activation of the BDNF receptor TrkB and an increase in Akt (AKT8 virus oncogene cellular homolog) activity. The ability of small molecules to activate a trophic response by using Trk signaling provides a unique mechanism to promote survival signals in motoneurons and suggests new strategies for using transactivation in neurodegenerative diseases
PMCID:2040418
PMID: 17940030
ISSN: 0027-8424
CID: 75446
A comparison of anti-thrombin therapies during elective percutaneous coronary intervention in the modern era: Bivalirudin versus heparin alone [Meeting Abstract]
Gade, Christopher LF; Feldman, Dmitriv N; Ross, Michael; Bergman, Geoffrey; Wong, SChiu; Minutello, Robert M
ISI:000250393900384
ISSN: 0002-9149
CID: 2667782
Myoferlin regulates vascular endothelial growth factor receptor-2 stability and function
Bernatchez, Pascal N; Acevedo, Lisette; Fernandez-Hernando, Carlos; Murata, Takahisa; Chalouni, Cecile; Kim, Jiae; Erdjument-Bromage, Hediye; Shah, Vijay; Gratton, Jean-Philippe; McNally, Elizabeth M; Tempst, Paul; Sessa, William C
Myoferlin and dysferlin are members of the ferlin family of membrane proteins. Recent studies have shown that mutation or genetic disruption of myoferlin or dysferlin promotes muscular dystrophy-related phenotypes in mice, which are the result of impaired plasma membrane integrity. However, no biological functions have been ascribed to myoferlin in non-muscle tissues. Herein, using a proteomic analysis of endothelial cell (EC) caveolae/lipid raft microdomains we identified myoferlin in these domains and show that myoferlin is highly expressed in ECs and vascular tissues. The loss of myoferlin results in lack of proliferation, migration, and nitric oxide (NO) release in response to vascular endothelial growth factor (VEGF). Western blotting and surface biotinylation experiments show that loss of myoferlin reduces the expression level and autophosphorylation of VEGF receptor-2 (VEGFR-2) in native ECs. In a reconstituted cell system, transfection of myoferlin increases VEGFR-2 membrane expression and autophosphorylation in response to VEGF. In vivo, VEGFR-2 levels and VEGF-induced permeability are impaired in myoferlin-deficient mice. Mechanistically, myoferlin forms a complex with dynamin-2 and VEGFR-2, which prevents CBL-dependent VEGFR-2 polyubiquitination and proteasomal degradation. These data are the first to report novel biological activities for myoferlin and reveal the role of membrane integrity to VEGF signaling
PMID: 17702744
ISSN: 0021-9258
CID: 103209