Searched for: school:SOM
Department/Unit:Cell Biology
Opponent vesicular transporters regulate the strength of glutamatergic neurotransmission in a C. elegans sensory circuit
Choi, Jung-Hwan; Horowitz, Lauren Bayer; Ringstad, Niels
At chemical synapses, neurotransmitters are packaged into synaptic vesicles that release their contents in response to depolarization. Despite its central role in synaptic function, regulation of the machinery that loads vesicles with neurotransmitters remains poorly understood. We find that synaptic glutamate signaling in a C. elegans chemosensory circuit is regulated by antagonistic interactions between the canonical vesicular glutamate transporter EAT-4/VGLUT and another vesicular transporter, VST-1. Loss of VST-1 strongly potentiates glutamate release from chemosensory BAG neurons and disrupts chemotaxis behavior. Analysis of the circuitry downstream of BAG neurons shows that excess glutamate release disrupts behavior by inappropriately recruiting RIA interneurons to the BAG-associated chemotaxis circuit. Our data indicate that in vivo the strength of glutamatergic synapses is controlled by regulation of neurotransmitter packaging into synaptic vesicles via functional coupling of VGLUT and VST-1.
PMID: 34732711
ISSN: 2041-1723
CID: 5038252
An exon junction complex-independent function of Barentsz in neuromuscular synapse growth
Ho, Cheuk Hei; Paolantoni, Chiara; Bawankar, Praveen; Tang, Zuojian; Brown, Stuart; Roignant, Jean-Yves; Treisman, Jessica E
The exon junction complex controls the translation, degradation, and localization of spliced mRNAs, and three of its core subunits also play a role in splicing. Here, we show that a fourth subunit, Barentsz, has distinct functions within and separate from the exon junction complex in Drosophila neuromuscular development. The distribution of mitochondria in larval muscles requires Barentsz as well as other exon junction complex subunits and is not rescued by a Barentsz transgene in which residues required for binding to the core subunit eIF4AIII are mutated. In contrast, interactions with the exon junction complex are not required for Barentsz to promote the growth of neuromuscular synapses. We find that the Activin ligand Dawdle shows reduced expression in barentsz mutants and acts downstream of Barentsz to control synapse growth. Both barentsz and dawdle are required in motor neurons, muscles, and glia for normal synapse growth, and exogenous Dawdle can rescue synapse growth in the absence of barentsz. These results identify a biological function for Barentsz that is independent of the exon junction complex.
PMID: 34726300
ISSN: 1469-3178
CID: 5038002
A gene toolbox for monitoring autophagy transcription
Bordi, Matteo; De Cegli, Rossella; Testa, Beatrice; Nixon, Ralph A; Ballabio, Andrea; Cecconi, Francesco
Autophagy is a highly dynamic and multi-step process, regulated by many functional protein units. Here, we have built up a comprehensive and up-to-date annotated gene list for the autophagy pathway, by combining previously published gene lists and the most recent publications in the field. We identified 604 genes and created main categories: MTOR and upstream pathways, autophagy core, autophagy transcription factors, mitophagy, docking and fusion, lysosome and lysosome-related genes. We then classified such genes in sub-groups, based on their functions or on their sub-cellular localization. Moreover, we have curated two shorter sub-lists to predict the extent of autophagy activation and/or lysosomal biogenesis; we next validated the "induction list" by Real-time PCR in cell lines during fasting or MTOR inhibition, identifying ATG14, ATG7, NBR1, ULK1, ULK2, and WDR45, as minimal transcriptional targets. We also demonstrated that our list of autophagy genes can be particularly useful during an effective RNA-sequencing analysis. Thus, we propose our lists as a useful toolbox for performing an informative and functionally-prognostic gene scan of autophagy steps.
PMCID:8563709
PMID: 34728604
ISSN: 2041-4889
CID: 5038062
The Plane of Mesh Placement Does Not Impact Abdominal Donor Site Complications in Microsurgical Breast Reconstruction
Henn, Dominic; Sivaraj, Dharshan; Barrera, Janos A; Lin, John Q; Chattopadhyay, Arhana; Maan, Zeshaan N; Chen, Kellen; Nguyen, Alan; Cheesborough, Jennifer; Gurtner, Geoffrey C; Lee, Gordon K; Nazerali, Rahim
BACKGROUND:Reinforcement of the abdominal wall with synthetic mesh in autologous breast reconstruction using abdominal free tissue transfer decreases the risk of bulging and herniation. However, the impact of the plane of mesh placement on donor site complications has not yet been investigated. METHODS:We performed a retrospective analysis of 312 patients who had undergone autologous breast reconstruction with muscle-sparing transverse rectus abdominis myocutaneous (MS-TRAM) flaps or deep inferior epigastric perforator (DIEP) flaps as well as polypropylene mesh implantation at the donor site. Donor site complications were compared among patients with different flap types and different mesh positions including overlay (n = 90), inlay and overlay (I-O; n = 134), and sublay (n = 88). RESULTS:Abdominal hernias occurred in 2.86% of patients who had undergone MS-TRAM reconstructions and in 2.63% of patients who had undergone DIEP reconstructions. When comparing patients with different mesh positions, donor site complications occurred in 14.4% of patients with overlay mesh, 13.4% of patients with I-O mesh, and 10.2% of patients with sublay mesh (P = 0.68). Abdominal hernias occurred in 4.44% of patients with overlay mesh, 2.24% of patients with I-O mesh, and 2.27% of patients with sublay mesh (P = 0.69). Multivariable logistic regression analysis did not identify a significant association between mesh position and hernia rates as well as wound complications. CONCLUSIONS:Our data indicate that the plane of synthetic mesh placement in relation to the rectus abdominis muscle does not impact the rate of postoperative donor site complications in patients undergoing breast reconstruction with MS-TRAM or DIEP flaps.
PMID: 34699433
ISSN: 1536-3708
CID: 5678132
Transcription Factor Dynamics
Lu, Feiyue; Lionnet, Timothée
To predict transcription, one needs a mechanistic understanding of how the numerous required transcription factors (TFs) explore the nuclear space to find their target genes, assemble, cooperate, and compete with one another. Advances in fluorescence microscopy have made it possible to visualize real-time TF dynamics in living cells, leading to two intriguing observations: first, most TFs contact chromatin only transiently; and second, TFs can assemble into clusters through their intrinsically disordered regions. These findings suggest that highly dynamic events and spatially structured nuclear microenvironments might play key roles in transcription regulation that are not yet fully understood. The emerging model is that while some promoters directly convert TF-binding events into on/off cycles of transcription, many others apply complex regulatory layers that ultimately lead to diverse phenotypic outputs. Cracking this kinetic code is an ongoing and challenging task that is made possible by combining innovative imaging approaches with biophysical models.
PMID: 34001530
ISSN: 1943-0264
CID: 4902872
Physician wellness in orthopaedic surgery : a multinational survey study
Mir, Hassan; Downes, Katheryne; Chen, Antonia F; Grewal, Ruby; Kelly, Derek M; Lee, Michael J; Leucht, Philipp; Dulai, Sukhdeep K
AIMS/OBJECTIVE:Physician burnout and its consequences have been recognized as increasingly prevalent and important issues for both organizations and individuals involved in healthcare delivery. The purpose of this study was to describe and compare the patterns of self-reported wellness in orthopaedic surgeons and trainees from multiple nations with varying health systems. METHODS:A cross-sectional survey of 774 orthopaedic surgeons and trainees in five countries (Australia, Canada, New Zealand, UK, and USA) was conducted in 2019. Respondents were asked to complete the Mayo Clinic Well-Being Index and the Stanford Professional Fulfillment Index in addition to 31 personal/demographic questions and 27 employment-related questions via an anonymous online survey. RESULTS:A total of 684 participants from five countries (Australia (n = 74), Canada (n = 90), New Zealand (n = 69), UK (n = 105), and USA (n = 346)) completed both of the risk assessment questionnaires (Mayo and Stanford). Of these, 42.8% (n = 293) were trainees and 57.2% (n = 391) were attending surgeons. On the Mayo Clinic Well-Being Index, 58.6% of the overall sample reported feeling burned out (n = 401). Significant differences were found between nations with regards to the proportion categorized as being at risk for poor outcomes (27.5% for New Zealand (19/69) vs 54.4% for Canada (49/90) ; p = 0.001). On the Stanford Professional Fulfillment Index, 38.9% of the respondents were classified as being burned out (266/684). Prevalence of burnout ranged from 27% for Australia (20/74 up to 47.8% for Canadian respondents (43/90; p = 0.010). Younger age groups (20 to 29: RR 2.52 (95% confidence interval (CI) 1.39 to 4.58; p = 0.002); 30 to 39: RR 2.40 (95% CI 1.36 to 4.24; p = 0.003); 40 to 49: RR 2.30 (95% CI 1.35 to 3.9; p = 0.002)) and trainee status (RR 1.53 (95% CI 1.15 to 2.03 p = 0.004)) were independently associated with increased relative risk of having a 'at-risk' or 'burnout' score. CONCLUSIONS:Â 2021;2(11):932-939.
PMID: 34766825
ISSN: 2633-1462
CID: 5050792
Idiopathic early ovarian aging: is there a relation with premenopausal accelerated biological aging in young women with diminished response to ART?
Christensen, Mette W; Keefe, David L; Wang, Fang; Hansen, Christine S; Chamani, Isaac J; Sommer, Carolyn; Nyegaard, Mette; Rohde, Palle D; Nielsen, Anders L; Bybjerg-Grauholm, Jonas; Kesmodel, Ulrik S; Knudsen, Ulla B; Kirkegaard, Kirstine; Ingerslev, Hans Jakob
PURPOSE/OBJECTIVE:To evaluate whether young women with idiopathic early ovarian aging, as defined by producing fewer oocytes than expected for a given age over multiple in vitro fertilization (IVF) cycles, have changes in telomere length and epigenetic age indicating accelerated biological aging (i.e., increased risk of morbidity and mortality). METHODS:A prospective cohort study was conducted at two Danish public fertility clinics. A total of 55 young women (≤ 37 years) with at least two IVF cycles with ≤ 5 harvested oocytes despite sufficient stimulation with follicle-stimulating hormone (FSH) were included in the early ovarian aging group. As controls, 52 young women (≤ 37 years) with normal ovarian function, defined by at least eight harvested oocytes, were included. Relative telomere length (rTL) and epigenetic age acceleration (AgeAccel) were measured in white blood cells as markers of premenopausal accelerated biological aging. RESULTS:rTL was comparable with a mean of 0.46 (± SD 0.12) in the early ovarian aging group and 0.47 (0.14) in the normal ovarian aging group. The AgeAccel of the early ovarian aging group was, insignificantly, 0.5 years older, but this difference disappeared when adjusting for chronological age. Sub-analysis using Anti-Müllerian hormone (AMH) as selection criterion for the two groups did not change the results. CONCLUSION/CONCLUSIONS:We did not find any indications of accelerated aging in whole blood from young women with idiopathic early ovarian aging. Further investigations in a similar cohort of premenopausal women or other tissues are needed to fully elucidate the potential relationship between premenopausal accelerated biological aging and early ovarian aging.
PMID: 34599460
ISSN: 1573-7330
CID: 5067622
Progranulin associates with Rab2 and is involved in autophagosome-lysosome fusion in Gaucher disease
Zhao, Xiangli; Liberti, Rossella; Jian, Jinlong; Fu, Wenyu; Hettinghouse, Aubryanna; Sun, Ying; Liu, Chuan-Ju
Progranulin (PGRN) is a key regulator of lysosomes, and its deficiency has been linked to various lysosomal storage diseases (LSDs), including Gaucher disease (GD), one of the most common LSD. Here, we report that PGRN plays a previously unrecognized role in autophagy within the context of GD. PGRN deficiency is associated with the accumulation of LC3-II and p62 in autophagosomes of GD animal model and patient fibroblasts, resulting from the impaired fusion of autophagosomes and lysosomes. PGRN physically interacted with Rab2, a critical molecule in autophagosome-lysosome fusion. Additionally, a fragment of PGRN containing the Grn E domain was required and sufficient for binding to Rab2. Furthermore, this fragment significantly ameliorated PGRN deficiency-associated impairment of autophagosome-lysosome fusion and autophagic flux. These findings not only demonstrate that PGRN is a crucial mediator of autophagosome-lysosome fusion but also provide new evidence indicating PGRN's candidacy as a molecular target for modulating autophagy in GD and other LSDs in general. KEY MESSAGES : PGRN acts as a crucial factor involved in autophagosome-lysosome fusion in GD. PGRN physically interacts with Rab2, a molecule in autophagosome-lysosome fusion. A 15-kDa C-terminal fragment of PGRN is required and sufficient for binding to Rab2. This PGRN derivative ameliorates PGRN deficiency-associated impairment of autophagy. This study provides new insights into autophagy and may develop novel therapy for GD.
PMCID:8541919
PMID: 34453183
ISSN: 1432-1440
CID: 5174932
Altered regulation of BRCA1 exon 11 splicing is associated with breast cancer risk in carriers of BRCA1 pathogenic variants
Ruiz de Garibay, Gorka; Fernandez-Garcia, Ignacio; Mazoyer, Sylvie; Leme de Calais, Flavia; Ameri, Pietro; Vijayakumar, Sangeetha; Martinez-Ruiz, Haydeliz; Damiola, Francesca; Barjhoux, Laure; Thomassen, Mads; Andersen, Lars V B; Herranz, Carmen; Mateo, Francesca; Palomero, Luis; EspÃn, Roderic; Gómez, Antonio; García, Nadia; Jimenez, Daniel; Bonifaci, Núria; Extremera, Ana I; Castaño, Julio; Raya, Angel; Eyras, Eduardo; Puente, Xose S; Brunet, Joan; Lázaro, Conxi; Radice, Paolo; Barnes, Daniel R; Antoniou, Antonis C; Spurdle, Amanda B; de la Hoya, Miguel; Baralle, Diana; Barcellos-Hoff, Mary Helen; Pujana, Miquel A
Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.
PMID: 34420246
ISSN: 1098-1004
CID: 5011032
Decreased production of epithelial-derived antimicrobial molecules at mucosal barriers during early life
Lokken-Toyli, Kristen L; de Steenhuijsen Piters, Wouter A A; Zangari, Tonia; Martel, Rachel; Kuipers, Kirsten; Shopsin, Bo; Loomis, Cynthia; Bogaert, Debby; Weiser, Jeffrey N
Young age is a risk factor for respiratory and gastrointestinal infections. Here, we compared infant and adult mice to identify age-dependent mechanisms that drive susceptibility to mucosal infections during early life. Transcriptional profiling of the upper respiratory tract (URT) epithelium revealed significant dampening of early life innate mucosal defenses. Epithelial-mediated production of the most abundant antimicrobial molecules, lysozyme, and lactoferrin, and the polymeric immunoglobulin receptor (pIgR), responsible for IgA transcytosis, was expressed in an age-dependent manner. This was attributed to delayed functional development of serous cells. Absence of epithelial-derived lysozyme and the pIgR was also observed in the small intestine during early life. Infection of infant mice with lysozyme-susceptible strains of Streptococcus pneumoniae or Staphylococcus aureus in the URT or gastrointestinal tract, respectively, demonstrated an age-dependent regulation of lysozyme enzymatic activity. Lysozyme derived from maternal milk partially compensated for the reduction in URT lysozyme activity of infant mice. Similar to our observations in mice, expression of lysozyme and the pIgR in nasopharyngeal samples collected from healthy human infants during the first year of life followed an age-dependent regulation. Thus, a global pattern of reduced antimicrobial and IgA-mediated defenses may contribute to increased susceptibility of young children to mucosal infections.
PMID: 34465896
ISSN: 1935-3456
CID: 4998412