Searched for: school:SOM
Department/Unit:Cell Biology
Regulating gene expression in the Drosophila germ line
Rangan, P; DeGennaro, M; Lehmann, R
Germ cells are the ultimate stem cells because they have the potential to give rise to a new organism. Specified during early embryogenesis in most species, germ cells evade somatic differentiation by using mechanisms such as transcriptional silencing and translational control (Seydoux and Braun 2006; Cinalli et al. 2008). To identify germ-line targets of translational regulation and to understand their mechanism of regulation, we used publicly available databases to identify RNAs localized to germ plasm. Using a transgenic reporter assay, we find that these germ-line RNAs are both spatially and temporally regulated during both oogenesis and embryogenesis by their 3'-untranslated regions (3'UTRs) (Rangan et al. 2008). We find that many RNAs that are spatially and temporally regulated in the early embryo are also translationally regulated during oogenesis. However, RNAs that are similarly regulated during oogenesis are no longer coregulated during embryogenesis, demonstrating that cis-acting sequences within a single RNA are used differentially during the life cycle of the germ line. Our study emphasizes a multifaceted role of translational regulation in germ cells. Many aspects of cellular behavior are shared between germ cells and other stem cells; thus, analysis of the translational regulatory networks controlling translation during the germ-line life cycle may reveal important general features of RNA regulation in stem cells
PMID: 19270081
ISSN: 1943-4456
CID: 99230
Diffusible retinal secretions regulate the expression of tight junctions and other diverse functions of the retinal pigment epithelium
Sun, Ru; Peng, Shaomin; Chen, Xiang; Zhang, Heping; Rizzolo, Lawrence J
PURPOSE: The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier. It is unclear how culture conditions might alter barrier properties of isolated RPE. We examined whether retinal secretions that increase the barrier functions of tight junctions in vitro also make gene expression in general more in vivo-like. METHODS: Chick RPE from embryonic day 7 (E7) and E14 were cultured on filters. Media conditioned by organ culture of E14 neural retinas was added to the apical medium chamber. RNA was isolated to probe the chick genome on Affymetrix microarrays, and expression was compared to native E14 RPE. Expression was further analyzed by quantitative real-time PCR immunoblotting and immunocytochemistry. RESULTS: More than 86% of the genes expressed in vivo were expressed in basal culture conditions, including RPE-specific markers such as RPE65 and bestrophin. E14 retinal conditioned medium affected 15% of the transcriptome in E7 cultures (24% if serum was included), but only 1.9% in E14 cultures (12% with serum). Examination of 610 genes important for RPE function revealed that mRNAs for 17% were regulated by retinal conditioned medium alone in E7 cultures, compared to 6.2% for E14. For tight junctions, retinal conditioned medium had the most effect on members of the claudin family. Besides regulating mRNA levels, immunoblotting and immunocytochemistry suggested additional mechanisms whereby retinal secretions regulated protein expression and localization. CONCLUSIONS: Gene expression in primary cultures of embryonic RPE resembled the native tissue, but differentiation and the levels of gene expression became more in vivo-like when elements of the retinal environment were introduced into the medium bathing the apical side of the cultures. Albeit insufficient, retinal secretions promoted differentiation of immature RPE and helped maintain the properties of more mature RPE.
PMCID:2593753
PMID: 19057659
ISSN: 1090-0535
CID: 382722
SDF-1 is Expressed in Osteocytes and Periosteal Cells in Response to Mechanical Loading. [Meeting Abstract]
Castillo, AB; Leucht, P; Tang, J; Helms, JA; Jacobs, CR
ISI:000259411002242
ISSN: 0884-0431
CID: 2346372
Expression patterns and prognostic value of Bag-1 and Bcl-2 in breast cancer
Nadler, Yasmine; Camp, Robert L; Giltnane, Jennifer M; Moeder, Christopher; Rimm, David L; Kluger, Harriet M; Kluger, Yuval
INTRODUCTION: Bcl-2 antanogene-1 (Bag-1) binds the anti-apoptotic mediator Bcl-2, and enhances its activity. Bcl-2 and Bag-1 are associated with chemotherapy resistance in cancer cells. Drugs that target Bcl-2 are currently in clinical development. The purpose of the present study was to examine expression patterns of Bag-1 in a large cohort of breast tumors and to assess the association with Bcl-2, estrogen receptor, progesterone receptor and Her2/neu, and other clinical/pathological variables. METHODS: Tissue microarrays containing primary specimens from 638 patients with 10-year follow-up were employed, and the expression of Bag-1, Bcl-2, estrogen receptor, progesterone receptor and Her2/neu was assessed using our automated quantitative analysis method. We used cytokeratin to define pixels as breast cancer (tumor mask) within the array spot, and we measured biomarker expression within the mask using Cy5 conjugated antibodies. RESULTS: High Bcl-2 expression was associated with improved survival in the entire cohort and in the node-positive subset (P = 0.008 and P = 0.002, respectively). High Bag-1 expression was associated with improved survival in the node-positive subset (P = 0.006). On multivariable analysis, neither Bcl-2 nor Bag-1 retained their independence as prognostic markers. Strong associations were found between Bag-1, Bcl-2, estrogen receptor and progesterone receptor. CONCLUSION: Bag-1 and Bcl-2 expression in breast tumors is associated with improved outcome and steroid receptor positivity. Evaluation of Bcl-2 and Bag-1 expression in breast cancer may identify a subset of patients with a favorable prognosis, who might not benefit from chemotherapy or who might benefit from Bcl-2 targeting agents in addition to antihormonal therapy
PMCID:2397537
PMID: 18430249
ISSN: 1465-542x
CID: 80344
Gastic MALT lymphoma
Chapter by: Miller G; Berman R
in: Advanced therapy in surgical oncology by Pollock RE [Eds]
Hamilton ON : BC Decker, 2008
pp. ?-?
ISBN: 1550091263
CID: 5249
Determinants of pathologic mineralization
Kirsch, Thorsten
Physiologic mineralization is necessary for the formation of skeletal tissues and for their appropriate functions during adulthood. Mineralization has to be controlled and restricted to specific regions. If the mineralization process occurs in regions that normally do not mineralize, there can be severe consequences (pathologic or ectopic mineralization). Recent findings have indicated that physiologic and pathologic mineralization events are initiated by matrix vesicles, membrane-enclosed particles released from the plasma membranes of mineralization-competent cells. The understanding of how these vesicles are released from the plasma membrane and initiate the mineralization process may provide novel therapeutic strategies to prevent pathologic mineralization. In addition, other regulators (activators and inhibitors) of physiologic mineralization have been identified and characterized, and there is evidence that the same factors also contribute to the regulation of pathologic mineralization. Finally, programmed cell death (apoptosis) may be a contributor to physiologic mineralization and if occurring after tissue injury may induce pathologic mineralization and mineralization-related differentiation events in the injured and surrounding areas. This review describes how the understanding of mechanisms and factors regulating physiologic mineralization can be used to develop new therapeutic strategies to prevent pathologic or ectopic mineralization events
PMID: 18197782
ISSN: 1045-4403
CID: 76624
Mammalian fertilization is dependent on multiple membrane fusion events
Wassarman, Paul M; Litscher, Eveline S
Successful completion of fertilization in mammals is dependent on three membrane fusion events. These are (1) the acrosome reaction of sperm, (2) the fusion of sperm and egg plasma membranes to form a zygote, and (3) the cortical reaction of fertilized eggs. Extensive research into the molecular basis of each of these events has identified candidate proteins and factors involved in fusion of membranes during the mammalian fertilization process. Some of this information is provided here.
PMID: 18979240
ISSN: 1064-3745
CID: 1100102
Conductive one-handed nanocoils by coassembly of hexabenzocoronenes: control of morphology and helical chirality
Yamamoto, Takuya; Fukushima, Takanori; Kosaka, Atsuko; Jin, Wusong; Yamamoto, Yohei; Ishii, Noriyuki; Aida, Takuzo
PMID: 18219640
ISSN: 1521-3773
CID: 2983072
Quinone oxidoreductases and vitamin K metabolism
Gong, Xing; Gutala, Ramana; Jaiswal, Anil K
Vitamin K1, K2, and K3 are essential nutrients associated with blood clotting and bone metabolism. Quinone oxidoreductases [NAD(P)H:quinone oxidoreductase 1 (NQO1) and NRH:quinone oxidoreductase 2 (NQO2)] are among the selected enzymes that catalyze reduction of vitamin K to vitamin K hydroquinone. NQO1 catalyzes high affinity reduction of vitamin K3 but has only weak affinity for reduction of vitamin K1 and K2. Vitamin K hydroquinone serves as a cofactor for vitamin K gamma-carboxylase that catalyzes gamma-carboxylation of specific glutamic acid residues in Gla-factors/proteins leading to their activation and participation in blood clotting and bone metabolism. Concomitant with Gla modification, a reduced vitamin K molecule is converted to vitamin K epoxide, which is converted back to vitamin K by the enzyme vitamin K epoxide reductase to complete vitamin K cycle. Vitamin K is also redox cycled. One-electron reduction of vitamin K3 leads to the formation of semiquinone that in the presence of oxygen is oxidized back to vitamin K3. Oxygen is reduced to generate reactive oxygen species (ROS) that causes oxidative stress and cytotoxicity. Vitamin K is used as radiation sensitizer or in mixtures with other chemotherapeutic drugs to treat several types of cancer. ROS generated in redox cycling contributes to anticancer activity of vitamin K. NQO1 competes with enzymes that redox cycle vitamin K and catalyzes two-electron reduction of vitamin K3 to hydroquinone. This skips formation of semiquinone and ROS. Therefore, NQO1 metabolically detoxifies vitamin K3 and protects cells against oxidative stress and other adverse effects. On the contrary, NQO2 catalyzes metabolic activation of vitamin K3 leading to cytotoxicity. The role of NQO1 and NQO2 in metabolic detoxification and/or activation of vitamin K1 and K2 remains to be determined. Future studies are also required to identify the enzymes that catalyze high affinity reduction of vitamin K1 and K2 to hydroquinone for use in gamma-carboxylation reactions.
PMID: 18374191
ISSN: 0083-6729
CID: 989342
Microinjection and cell transplantation in zebrafish embryos
Xu, Qiling; Stemple, Derek; Joubin, Katherine
PMID: 19030820
ISSN: 1064-3745
CID: 2503162