Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14091


Molecular engineering of coaxial donor-acceptor heterojunction by coassembly of two different hexabenzocoronenes: graphitic nanotubes with enhanced photoconducting properties

Yamamoto, Yohei; Fukushima, Takanori; Saeki, Akinori; Seki, Shu; Tagawa, Seiichi; Ishii, Noriyuki; Aida, Takuzo
PMID: 17622152
ISSN: 0002-7863
CID: 2982782

Activation/proliferation and apoptosis of bystander goat lymphocytes induced by a macrophage-tropic chimeric caprine arthritis encephalitis virus expressing SIV Nef

Bouzar, Baya Amel; Rea, Angela; Hoc-Villet, Stephanie; Garnier, Celine; Guiguen, Francois; Jin, Yuhuai; Narayan, Opendra; Chebloune, Yahia
Caprine arthritis encephalitis virus (CAEV) is the natural lentivirus of goats, well known for its tropism for macrophages and its inability to cause infection in lymphocytes. The viral genome lacks nef, tat, vpu and vpx coding sequences. To test the hypothesis that when nef is expressed by the viral genome, the virus became toxic for lymphocytes during replication in macrophages, we inserted the SIVsmm PBj14 nef coding sequences into the genome of CAEV thereby generating CAEV-nef. This recombinant virus is not infectious for lymphocytes but is fully replication competent in goat macrophages in which it constitutively expresses the SIV Nef. We found that goat lymphocytes cocultured with CAEV-nef-infected macrophages became activated, showing increased expression of the interleukin-2 receptor (IL-2R). Activation correlated with increased proliferation of the cells. Interestingly, a dual effect in terms of apoptosis regulation was observed in exposed goat lymphocytes. Nef was found first to induce a protection of lymphocytes from apoptosis during the first few days following exposure to infected macrophages, but later it induced increased apoptosis in the activated lymphocytes. This new recombinant virus provides a model to study the functions of Nef in the context of infection of macrophages, but in absence of infection of T lymphocytes and brings new insights into the biological effects of Nef on lymphocytes.
PMCID:2479789
PMID: 17442361
ISSN: 0042-6822
CID: 171091

Evidence for a gram-positive, eubacterial root of the tree of life

Skophammer, Ryan G; Servin, Jacqueline A; Herbold, Craig W; Lake, James A
Directed indels, insertions, and deletions within paralogous genes, have the potential to root the tree of life. Here we apply a newly developed rooting algorithm, top-down rooting, to indels found in informational and operational gene sets, introduce new computational tools for indel analyses, and present evidence (P < .01) that the root of the tree of life is not present in its traditional location, between the Eubacteria and the Archaebacteria. Using indels contained in the dihydroorotate dehydrogenase/uroporphyrinogen decarboxylase gene pair and in the ribosomal protein S12/beta prime subunit of the RNA polymerase gene pair, we exclude the root from within the clade consisting of the Firmicutes plus the Archaebacteria and their most recent common ancestor. These results, plus previous directed indel studies excluding the root from the eukaryotes, restrict the root to just four possible sites. One potential root is on the branch leading to the double-membrane prokaryotes, another is on the branch leading to the Actinobacteria, another is within the Actinobacteria, and the fourth is on the branch leading to the Firmicutes-Archaea clade. These results imply (1) that the cenancestral population was not hyperthermophilic, but moderate thermophily cannot be excluded for the root on the branch leading to the Firmicutes-Archaea clade, (2) that the cenancestral population was surrounded by ester lipids and a peptidoglycan layer, and (3) that parts of the mevalonate synthesis pathway were present in the population ancestral to the Bacilli and the Archaebacteria, including geranylgeranylglyceryl phosphate synthase, an enzyme thought to be partially responsible for the unique sn-1 stereochemistry of the archaeal glycerol phosphate backbone.
PMID: 17513883
ISSN: 0737-4038
CID: 282032

Disruption of peripheral leptin signaling in mice results in hyperleptinemia without associated metabolic abnormalities

Guo, Kaiying; McMinn, Julie E; Ludwig, Thomas; Yu, Yi-Hao; Yang, Guoqing; Chen, Lulu; Loh, Daniella; Li, Cai; Chua, Streamson Jr; Zhang, Yiying
Although central leptin signaling appears to play a major role in the regulation of food intake and energy metabolism, the physiological role of peripheral leptin signaling and its relative contribution to whole-body energy metabolism remain unclear. To address this question, we created a mouse model (Cre-Tam mice) with an intact leptin receptor in the brain but a near-complete deletion of the signaling domain of leptin receptor in liver, adipose tissue, and small intestine using a tamoxifen (Tam)-inducible Cre-LoxP system. Cre-Tam mice developed marked hyperleptinemia (approximately 4-fold; P < 0.01) associated with 2.3-fold increase (P < 0.05) in posttranscriptional production of leptin. Whereas this is consistent with the disruption of a negative feedback regulation of leptin production in adipose tissue, there were no discernable changes in energy balance, thermoregulation, and insulin sensitivity. Hypothalamic levels of phosphorylated signal transducer and activator of transcription 3, neuropeptide expression, and food intake were not changed despite hyperleptinemia. The percentage of plasma-bound leptin was markedly increased (90.1-96 vs. 41.8-74.7%; P < 0.05), but plasma-free leptin concentrations remained unaltered in Cre-Tam mice. We conclude from these results that 1) the relative contribution to whole-body energy metabolism from peripheral leptin signaling is insignificant in vivo, 2) leptin signaling in adipocyte constitutes a distinct short-loop negative feedback regulation of leptin production that is independent of tissue metabolic status, and 3) perturbation of peripheral leptin signaling alone, although increasing leptin production, may not be sufficient to alter the effective plasma levels of leptin because of the counter-regulatory increase in the level of leptin binding protein(s).
PMID: 17495001
ISSN: 0013-7227
CID: 762342

Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR

Meisner, Nicole-Claudia; Hintersteiner, Martin; Mueller, Kurt; Bauer, Roman; Seifert, Jan-Marcus; Naegeli, Hans-Ulrich; Ottl, Johannes; Oberer, Lukas; Guenat, Christian; Moss, Serge; Harrer, Nathalie; Woisetschlaeger, Maximilian; Buehler, Christof; Uhl, Volker; Auer, Manfred
Careful regulation of mRNA half-lives is a fundamental mechanism allowing cells to quickly respond to changing environmental conditions. The mRNA-binding Hu proteins are important for stabilization of short-lived mRNAs. Here we describe the identification and mechanistic characterization of the first low-molecular-weight inhibitors for Hu protein R (HuR) from microbial broths (Actinomyces sp.): dehydromutactin (1), MS-444 (2) and okicenone (3). These compounds interfere with HuR RNA binding, HuR trafficking, cytokine expression and T-cell activation. A mathematical and experimental analysis of the compounds' mode of action suggests that HuR homodimerizes before RNA binding and that the compounds interfere with the formation of HuR dimers. Our results demonstrate the chemical drugability of HuR; to our knowledge HuR is the first example of a drugable protein within the Hu family. MS-444, dehydromutactin and okicenone may become valuable tools for studying HuR function. An assessment of HuR inhibition as a central node in malignant processes might open up new conceptual routes toward combatting cancer.
PMID: 17632515
ISSN: 1552-4450
CID: 2446392

Early developmental specification of the thyroid gland depends on han-expressing surrounding tissue and on FGF signals

Wendl, Thomas; Adzic, Dejan; Schoenebeck, Jeffrey J; Scholpp, Steffen; Brand, Michael; Yelon, Deborah; Rohr, Klaus B
The thyroid is an endocrine gland in all vertebrates that develops from the ventral floor of the anterior pharyngeal endoderm. Unravelling the molecular mechanisms of thyroid development helps to understand congenital hypothyroidism caused by the absence or reduction of this gland in newborn humans. Severely reduced or absent thyroid-specific developmental genes concomitant with the complete loss of the functional gland in the zebrafish hands off (han, hand2) mutant reveals the han gene as playing a novel, crucial role in thyroid development. han-expressing tissues surround the thyroid primordium throughout development. Fate mapping reveals that, even before the onset of thyroid-specific developmental gene expression, thyroid precursor cells are in close contact with han-expressing cardiac lateral plate mesoderm. Grafting experiments show that han is required in surrounding tissue, and not in a cell-autonomous manner, for thyroid development. Loss of han expression in the branchial arches and arch-associated cells after morpholino knock-down of upstream regulator genes does not impair thyroid development, indicating that other han-expressing structures, most probably cardiac mesoderm, are responsible for the thyroid defects in han mutants. The zebrafish ace (fgf8) mutant has similar thyroid defects as han mutants, and chemical suppression of fibroblast growth factor (FGF) signalling confirms that this pathway is required for thyroid development. FGF-soaked beads can restore thyroid development in han mutants, showing that FGFs act downstream of or in parallel to han. These data suggest that loss of FGF-expressing tissue in han mutants is responsible for the thyroid defects.
PMID: 17611226
ISSN: 0950-1991
CID: 381532

The minimum information about a proteomics experiment (MIAPE)

Taylor, Chris F; Paton, Norman W; Lilley, Kathryn S; Binz, Pierre-Alain; Julian, Randall K Jr; Jones, Andrew R; Zhu, Weimin; Apweiler, Rolf; Aebersold, Ruedi; Deutsch, Eric W; Dunn, Michael J; Heck, Albert J R; Leitner, Alexander; Macht, Marcus; Mann, Matthias; Martens, Lennart; Neubert, Thomas A; Patterson, Scott D; Ping, Peipei; Seymour, Sean L; Souda, Puneet; Tsugita, Akira; Vandekerckhove, Joel; Vondriska, Thomas M; Whitelegge, Julian P; Wilkins, Marc R; Xenarios, Ioannnis; Yates, John R 3rd; Hermjakob, Henning
Both the generation and the analysis of proteomics data are now widespread, and high-throughput approaches are commonplace. Protocols continue to increase in complexity as methods and technologies evolve and diversify. To encourage the standardized collection, integration, storage and dissemination of proteomics data, the Human Proteome Organization's Proteomics Standards Initiative develops guidance modules for reporting the use of techniques such as gel electrophoresis and mass spectrometry. This paper describes the processes and principles underpinning the development of these modules; discusses the ramifications for various interest groups such as experimentalists, funders, publishers and the private sector; addresses the issue of overlap with other reporting guidelines; and highlights the criticality of appropriate tools and resources in enabling 'MIAPE-compliant' reporting
PMID: 17687369
ISSN: 1087-0156
CID: 73905

Proteomic Analysis of Pancreatic Zymogen Granules: Identification of New Granule Proteins

Rindler, Michael J; Xu, Chong-Feng; Gumper, Iwona; Smith, Nora N; Neubert, Thomas A
The composition of zymogen granules from rat pancreas was determined by LC-MS/MS. Enriched intragranular content, peripheral membrane, and integral membrane protein fractions were analyzed after one-dimensional SDS-PAGE and tryptic digestion of gel slices. A total of 371 proteins was identified with high confidence, including 84 previously identified granule proteins. The 287 remaining proteins included 37 GTP-binding proteins and effectors, 8 tetraspan membrane proteins, and 22 channels and transporters. Seven proteins, pantophysin, cyclic nucleotide phosphodiesterase, carboxypeptidase D, ecto-nucleotide phosphodiesterase 3, aminopeptidase N, ral, and the potassium channel TWIK-2, were confirmed by immunofluorescence microscopy or by immunoblotting to be new zymogen granule membrane proteins. Keywords: proteomics * mass spectrometry * LC-MS/MS * pancreas * zymogen granules * acinar cells.
PMCID:2582026
PMID: 17583932
ISSN: 1535-3893
CID: 72969

The JNK/AP-1 pathway upregulates expression of the recycling endosome rab11a gene in B cells transformed by Theileria

Lizundia, Regina; Chaussepied, Marie; Naissant, Bernina; Masse, Guillemette X; Quevillon, Emmanuel; Michel, Frederique; Monier, Solange; Weitzman, Jonathan B; Langsley, Gordon
Lymphocyte transformation induced by Theileria parasites involves constitutive activation of c-Jun N-terminal kinase (JNK) and the AP-1 transcription factor. We found that JNK/AP-1 activation is associated with elevated levels of Rab11 protein in Theileria-transformed B cells. We show that AP-1 regulates rab11a promoter activity in B cells and that the induction of c-Jun activity in mouse fibroblasts also leads to increased transcription of the endogenous rab11a gene, consistent with it being an AP-1 target. Pharmacological inhibition of the JNK pathway reduced Rab11 protein levels and endosome recycling of transferrin receptor (TfR) and siRNA knockdown of JNK1 and Rab11A levels also reduced TfR surface expression. We propose a model, where activation of the JNK/AP-1 pathway during cell transformation might assure that the regulation of recycling endosomes is co-ordinated with cell-cycle progression. This might be achieved via the simultaneous upregulation of the cell cycle machinery (e.g. cyclin D1) and the recycling endosome regulators (e.g. Rab11A).
PMID: 17388783
ISSN: 1462-5814
CID: 969612

Characterization by tandem mass spectrometry of stable cysteine sulfenic acid in a cysteine switch peptide of matrix metalloproteinases

Shetty, Vivekananda; Spellman, Daniel S; Neubert, Thomas A
Cysteine sulfenic acid (Cys-SOH) is an elusive intermediate in reactive oxygen species-induced oxidation reactions of many proteins such as peroxiredoxins and tyrosine phosphatases. Cys-SOH is proposed to play a vital role in catalytic and signaling functions. The formation of cysteine sulfinic acid (Cys-SO(2)H) and cysteine sulfonic acid (Cys-SO(3)H) has been implicated in the activation of matrix metalloproteinase-7 (MMP-7) and oxidation of thiol to cysteine sulfinic acid has been associated with the autolytic cleavage of MMP-7. We have examined the formation of cysteine sulfenic acid in a synthetic peptide PRCGVPDVA, which is a cysteine switch domain of MMP-7 and other matrix metalloproteases. We have prepared the cysteine sulfenic acid containing peptide, PRC(SOH)GVPDVA, by reaction with hydroxyl radicals generated by the Fenton reaction (Fe(+2)/H(2)O(2)). We characterized this modified peptide by tandem mass spectrometry and accurate mass measurement experiments. In addition, we used 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol (NBD-Cl) reagent to form an adduct with PRC(SOH)GVPDVA to provide additional evidence for the viability of PRC(SOH)GVPDVA in solution. We also characterized an intramolecular cysteine sulfinamide cross-link product PRC[S(O)N]GVPDVA based on tandem mass spectrometry and accurate mass measurement experiments. These results contribute to the understanding of a proteolytic cleavage mechanism that is traditionally associated with MMP activation
PMCID:1994715
PMID: 17604642
ISSN: 1044-0305
CID: 73855