Searched for: school:SOM
Department/Unit:Neuroscience Institute
Prevalence of Single-Sided Deafness in the United States
Kay-Rivest, Emily; Irace, Alexandria L; Golub, Justin S; Svirsky, Mario A
OBJECTIVES/HYPOTHESIS/OBJECTIVE:The aim of this study was to obtain a reliable estimate of single-sided deafness (SSD) prevalence in the adult U.S. POPULATION/METHODS/: METHODS:A cross-sectional national epidemiologic study was performed. Participants were included from the National Health and Nutrition Examination Survey (NHANES). Each cohort includes a nationally representative sample of approximately 5,000 noninstitutionalized civilians. Subjects 20 years old and over with audiometric testing were included. SSD was defined as normal hearing (pure-tone average [PTA] of ≤25 dB) in one ear and severe or worse hearing (PTA > 70 dB) in the other, using both three- and four-frequency PTA definition. Prevalence was measured as a raw number (n) and percentage (%) of the sample. Weighted estimates of prevalence were calculated based on the 2019 U.S. population census. RESULTS:An estimated 345,064 Americans (estimated prevalence of 0.14%, 95% confidence interval = 0.08-0.24) had SSD. SSD was more prevalent in individuals 60 to 79 years of age (estimated 155,917 U.S. adults, prevalence of 0.25%). A higher prevalence of SSD was noted among women compared to men (215,430 U.S. adult women, prevalence of 0.17% vs. 131,726 U.S. adult men, prevalence of 0.11%). Using a three-frequency PTA definition resulted in an estimated prevalence of 0.11%. Finally, 27% of adults with SSD reported having "good" or "excellent" hearing despite their hearing loss. CONCLUSIONS:The prevalence of SSD in the United States is estimated at 0.11%-0.14% (271,122 to 345,064 adults), depending on PTA definition used. These individuals could potentially benefit from auditory rehabilitation, including cochlear implantation. LEVEL OF EVIDENCE/METHODS:2 Laryngoscope, 2021.
PMID: 34757636
ISSN: 1531-4995 
CID: 5043762 
PGT-A: The biology and hidden failures of randomized control trials
Wang, Li; Wang, Xiaohong; Li, Min; Liu, Yun; Ou, Xianghong; Chen, Lei; Shao, Xiaoguang; Quan, Song; Duan, Jinliang; He, Wei; Shen, Huan; Sun, Ling; Yu, Yuexin; Cram, David S; Leigh, Donald; Yao, Yuanqing
OBJECTIVE:Preimplantation Genetic Testing - Aneuploidy (PGT-A) for embryo selection has undergone significant advancements in the last 2 decades and yet many studies still fail to demonstrate any clinical benefits over traditional embryo morphology selection (Mo-S). To understand this conundrum, we performed a multi-center clinical study of PGT-A patients, where Mo-S and euploid selection (Eu-S) outcomes were directly compared. METHOD:All suitable blastocysts were biopsied and analyzed for chromosome copy number. Outcomes (positive beta hCG, implantation, ongoing pregnancy, and live birth rates) for Eu-S were compared to Mo-S using single embryo transfers. RESULTS:Compared to Eu-S embryos, Mo-S embryos resulted in significant reduction of outcomes for positive beta hCG (p = 0.0005), implantation (p = 0.0008), ongoing pregnancy (p = 0.0046), livebirth (p = 0.0112), babies per transfer (p = 0.0112), and babies per embryo transferred (p = 0.0112). Morphology selection resulted in patients of all age groups having non-euploid embryos chosen for transfer. Post-hoc evaluation of individual clinic performances showed variable transfer outcomes that could potentially confound the true benefits of PGT-A. CONCLUSION:Embryo chromosome status is central to improved embryo transfer outcomes and sole reliance on current morphology-based selection practices, without Eu-S, will always compromise outcomes. Often overlooked but a major effector of successful PGT-A outcomes are individual clinic performances.
PMID: 35765263
ISSN: 1097-0223 
CID: 5321682 
Cystinuria: an update on pathophysiology, genetics, and clinical management
D'Ambrosio, Viola; Capolongo, Giovanna; Goldfarb, David; Gambaro, Giovanni; Ferraro, Pietro Manuel
Cystinuria is the most common genetic cause of nephrolithiasis in children. It is considered a heritable aminoaciduria as the genetic defect affects the reabsorption of cystine and three other amino acids (ornithine, lysine, and arginine) in the renal proximal tubule. Patients affected by this condition have elevated excretion of cystine in the urine, and because of this amino acid's low solubility at normal urine pH, patients tend to form cystine calculi. To date, two genes have been identified as disease-causative: SLC3A1 and SLC7A9, encoding for the two subunits of the heterodimeric transporter. The clinical features of this condition are solely related to nephrolithiasis. The diagnosis is usually made during infancy or adolescence, but cases of late diagnosis are common. The goal of therapy is to reduce excretion and increase the solubility of cystine, through both modifications of dietary habits and pharmacological treatment. However, therapeutic interventions are not always sufficient, and patients often have to undergo several surgical procedures during their lives to treat recurrent nephrolithiasis. The goal of this literature review is to synthesize the available evidence on diagnosis and management of patients affected by cystinuria in order to provide physicians with a practical tool that can be used in daily clinical practice. This review also aims to shed some light on new therapy directions with the aim of ameliorating kidney outcomes while improving adherence to treatment and quality of life of cystinuric patients.
PMID: 34812923
ISSN: 1432-198x 
CID: 5063522 
Contrasting Ionic Mechanisms of Impaired Conduction in FHF1- and FHF2-Deficient Hearts [Letter]
Santucci, John; Park, David S; Shekhar, Akshay; Lin, Xianming; Bu, Lei; Yamaguchi, Naoko; Mintz, Shana; Chang, Ernest Whanwook; Khodadadi-Jamayran, Alireza; Redel-Traub, Gabriel; Goldfarb, Mitchell; Fishman, Glenn I
PMID: 35862854
ISSN: 1941-3084 
CID: 5268322 
Brain-implanted conductors amplify radiofrequency fields in rodents: advantages and risks
Voroslakos, Mihaly; Yaghmazadeh, Omid; Alon, Leeor; Sodickson, Daniel K; Buzsaki, Gyorgy
ORIGINAL:0016469
ISSN: 2692-8205 
CID: 5417722 
Leptin promotes striatal dopamine release via cholinergic interneurons and regionally distinct signaling pathways
Mancini, Maria; Patel, Jyoti C; Affinati, Alison H; Witkovsky, Paul; Rice, Margaret E
Dopamine (DA) is a critical regulator of striatal network activity and is essential for motor activation and reward-associated behaviors. Previous work has shown that DA is influenced by the reward value of food, as well as by hormonal factors implicated in the regulation of food intake and energy expenditure. Changes in striatal DA signaling also have been linked to aberrant eating patterns. Here we test the effect of leptin, an adipocyte-derived hormone involved in feeding and energy homeostasis regulation, on striatal DA release and uptake. Immunohistochemical evaluation identified leptin receptor expression throughout mouse striatum, including on striatal cholinergic interneurons and their extensive processes. Using fast-scan cyclic voltammetry, we found that leptin causes a concentration-dependent increase in evoked extracellular DA concentration ([DA]o) in dorsal striatum and nucleus accumbens (NAc) core and shell in male mouse striatal slices, and also an increase in the rate of DA uptake. Further, we found that leptin increases cholinergic interneuron excitability, and that the enhancing effect of leptin on evoked [DA]o is lost when nicotinic acetylcholine (ACh) receptors are antagonized or when examined in striatal slices from mice lacking ACh synthesis. Evaluation of signaling pathways underlying leptin's action revealed a requirement for intracellular Ca2+, and the involvement of different downstream pathways in dorsal striatum and NAc core versus NAc shell. These results provide the first evidence for dynamic regulation of DA release and uptake by leptin within brain motor and reward pathways, and highlight the involvement of cholinergic interneurons in this process.SIGNIFICANCE STATEMENTGiven the importance of striatal dopamine in reward, motivation, motor behavior and food intake, identifying the actions of metabolic hormones on dopamine release in striatal subregions should provide new insight into factors that influence dopamine-dependent motivated behaviors. We find that one of these hormones, leptin, boosts striatal dopamine release through a process involving striatal cholinergic interneurons and nicotinic acetylcholine receptors. Moreover, we find that the intracellular cascades downstream from leptin receptor activation underlying enhanced dopamine release differ among striatal subregions. Thus, we not only show that leptin regulates dopamine release, but also identify characteristics of this process that could be harnessed to alter pathological eating behaviors.
PMID: 35906070
ISSN: 1529-2401 
CID: 5277032 
A Theoretical Framework for Human and Nonhuman Vocal Interaction
Castellucci, Gregg A; Guenther, Frank H; Long, Michael A
Vocal communication is a critical feature of social interaction across species; however, the relation between such behavior in humans and nonhumans remains unclear. To enable comparative investigation of this topic, we review the literature pertinent to interactive language use and identify the superset of cognitive operations involved in generating communicative action. We posit these functions comprise three intersecting multistep pathways: (a) the Content Pathway, which selects the movements constituting a response; (b) the Timing Pathway, which temporally structures responses; and (c) the Affect Pathway, which modulates response parameters according to internal state. These processing streams form the basis of the Convergent Pathways for Interaction framework, which provides a conceptual model for investigating the cognitive and neural computations underlying vocal communication across species. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
PMID: 35316612
ISSN: 1545-4126 
CID: 5206642 
Oral Cancer Cells Release Vesicles that Cause Pain
Dubeykovskaya, Zinaida A; Tu, Nguyen Huu; Garcia, Paulina D Ramírez; Schmidt, Brian L; Albertson, Donna G
Oral cancer pain is attributed to the release from cancers of mediators that sensitize and activate sensory neurons. Intraplantar injection of conditioned media (CM) from human tongue cancer cell line HSC-3 or OSC-20 evokes nociceptive behavior. By contrast, CM from noncancer cell lines, DOK, and HaCaT are non-nociceptive. Pain mediators are carried by extracellular vesicles (EVs) released from cancer cells. Depletion of EVs from cancer cell line CM reverses mechanical allodynia and thermal hyperalgesia. CM from non-nociceptive cell lines become nociceptive when reconstituted with HSC-3 EVs. Two miRNAs (hsa-miR-21-5p and hsa-miR-221-3p) are identified that are present in increased abundance in EVs from HSC-3 and OSC-20 CM compared to HaCaT CM. The miRNA target genes suggest potential involvement in oral cancer pain of the toll like receptor 7 (TLR7) and 8 (TLR8) pathways, as well as signaling through interleukin 6 cytokine family signal transducer receptor (gp130, encoded by IL6ST) and colony stimulating factor receptor (G-CSFR, encoded by CSF3R), Janus kinase and signal transducer and activator of transcription 3 (JAK/STAT3). These studies confirm the recent discovery of the role of cancer EVs in pain and add to the repertoire of algesic and analgesic cancer pain mediators and pathways that contribute to oral cancer pain.
PMID: 35802912
ISSN: 2701-0198 
CID: 5280822 
Recurrent somatic mutations as predictors of immunotherapy response
Gajic, Zoran Z; Deshpande, Aditya; Legut, Mateusz; Imieliński, Marcin; Sanjana, Neville E
Immune checkpoint blockade (ICB) has transformed the treatment of metastatic cancer but is hindered by variable response rates. A key unmet need is the identification of biomarkers that predict treatment response. To address this, we analyzed six whole exome sequencing cohorts with matched disease outcomes to identify genes and pathways predictive of ICB response. To increase detection power, we focus on genes and pathways that are significantly mutated following correction for epigenetic, replication timing, and sequence-based covariates. Using this technique, we identify several genes (BCLAF1, KRAS, BRAF, and TP53) and pathways (MAPK signaling, p53 associated, and immunomodulatory) as predictors of ICB response and develop the Cancer Immunotherapy Response CLassifiEr (CIRCLE). Compared to tumor mutational burden alone, CIRCLE led to superior prediction of ICB response with a 10.5% increase in sensitivity and a 11% increase in specificity. We envision that CIRCLE and more broadly the analysis of recurrently mutated cancer genes will pave the way for better prognostic tools for cancer immunotherapy.
PMCID:9270330
PMID: 35803911
ISSN: 2041-1723 
CID: 5270412 
Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation
Fernández-Castañeda, Anthony; Lu, Peiwen; Geraghty, Anna C; Song, Eric; Lee, Myoung-Hwa; Wood, Jamie; O'Dea, Michael R; Dutton, Selena; Shamardani, Kiarash; Nwangwu, Kamsi; Mancusi, Rebecca; Yalçın, Belgin; Taylor, Kathryn R; Acosta-Alvarez, Lehi; Malacon, Karen; Keough, Michael B; Ni, Lijun; Woo, Pamelyn J; Contreras-Esquivel, Daniel; Toland, Angus Martin Shaw; Gehlhausen, Jeff R; Klein, Jon; Takahashi, Takehiro; Silva, Julio; Israelow, Benjamin; Lucas, Carolina; Mao, Tianyang; Peña-Hernández, Mario A; Tabachnikova, Alexandra; Homer, Robert J; Tabacof, Laura; Tosto-Mancuso, Jenna; Breyman, Erica; Kontorovich, Amy; McCarthy, Dayna; Quezado, Martha; Vogel, Hannes; Hefti, Marco M; Perl, Daniel P; Liddelow, Shane; Folkerth, Rebecca; Putrino, David; Nath, Avindra; Iwasaki, Akiko; Monje, Michelle
COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.
PMCID:9189143
PMID: 35768006
ISSN: 1097-4172 
CID: 5278212