Searched for: school:SOM
Department/Unit:Cell Biology
Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance
Liu, Li; Zhang, Yiying; Chen, Nancy; Shi, Xiaojing; Tsang, Bonny; Yu, Yi-Hao
Increased fat deposition in skeletal muscle is associated with insulin resistance. However, exercise increases both intramyocellular fat stores and insulin sensitivity, a phenomenon referred to as "the athlete's paradox". In this study, we provide evidence that augmenting triglyceride synthesis in skeletal muscle is intrinsically connected with increased insulin sensitivity. Exercise increased diacylglycerol (DAG) acyltransferase (DGAT) activity in skeletal muscle. Channeling fatty acid substrates into TG resulted in decreased DAG and ceramide levels. Transgenic overexpression of DGAT1 in mouse skeletal muscle replicated these findings and protected mice against high-fat diet-induced insulin resistance. Moreover, in isolated muscle, DGAT1 deficiency exacerbated insulin resistance caused by fatty acids, whereas DGAT1 overexpression mitigated the detrimental effect of fatty acids. The heightened insulin sensitivity in the transgenic mice was associated with attenuated fat-induced activation of DAG-responsive PKCs and the stress mediator JNK1. Consistent with these changes, serine phosphorylation of insulin receptor substrate 1 was reduced, and Akt activation and glucose 4 membrane translocation were increased. In conclusion, upregulation of DGAT1 in skeletal muscle is sufficient to recreate the athlete's paradox and illustrates a mechanism of exercise-induced enhancement of muscle insulin sensitivity. Thus, increasing muscle DGAT activity may offer a new approach to prevent and treat insulin resistance and type 2 diabetes mellitus.
PMCID:1866250
PMID: 17510710
ISSN: 0021-9738
CID: 762332
Catecholamines in stress: molecular mechanisms of gene expression
Sabban, Esther L
The catecholamines play key roles in orchestrating the response to stress. While this is crucial to handle emergency situations, stress becomes maladaptive when prolonged or repeated, increasing allosteric load and susceptibility to a wide range of serious diseases. The time frame of the regulation of gene expression, especially as it relates to catecholamine (CA) biosynthetic enzymes are compared in three crucial catecholaminergic locations, the adrenal medulla, sympathetic ganglia and locus coeruleus in male animals. The adrenal medulla displays very rapid response to stress and gene profiling reveals a wide repertoire of target genes, many of them activated by single and not by repeated stress. In contrast to the adrenal medulla, the sympathetic ganglia are especially responsive to activation of the HPA axis, and ACTH may have a direct effect. The locus coeruleus, origin of most of the noradrenergic neurons innervating much of the brain, displays activation of additional signalling pathways and transcription factor with repeated compared to single exposure to stress. Most of the studies have been performed in males. However, there is considerable evidence that females respond differently to stress. Estradiol can regulate TH, DBH and GTPCH gene expression, as well as to modulate its response to other second messenger such as cAMP. Prior treatment with estradiol was found to alter the response of CA biosynthetic enzymes to stress. This emphasizes the tissue and sex specific features of the mechanistic underpinning of the adaptation or maladaptation of the catecholaminergic systems to stress and provides the basis for specific interventions. Key words: Adrenal medulla - Catecholamine biosynthesis - Estrogen - Sympathetic ganglia - Locus coeruleus - Stress - Transcription factors.
PMID: 18257649
ISSN: 1210-0668
CID: 606672
The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2
Mor, Adam; Campi, Gabriele; Du, Guangwei; Zheng, Yang; Foster, David A; Dustin, Michael L; Philips, Mark R
Ras activation as a consequence of antigen receptor (T-cell receptor; TCR) engagement on T lymphocytes is required for T-cell development, selection and function. Lymphocyte function-associated antigen-1 (LFA-1) mediates lymphocyte adhesion, stabilization of the immune synapse and bidirectional signalling. Using a fluorescent biosensor we found that TCR activation with or without costimulation of CD28 led to activation of Ras only on the Golgi apparatus, whereas costimulation with LFA-1 induced Ras activation on both the Golgi and the plasma membrane. Ras activation on both compartments required RasGRP1, an exchange factor regulated by calcium and diacylglycerol (DAG), but phospholipase C (PLC) activity was required only for activation on the Golgi. Engagement of LFA-1 increased DAG levels at the plasma membrane by stimulating phospholipase D (PLD). PLD2 and phosphatidic acid phosphatase (PAP) were required for Ras activation on the plasma membrane. Thus, LFA-1 acts through PLD2 to reshape the pattern of Ras activation downstream of the TCR
PMID: 17486117
ISSN: 1465-7392
CID: 73108
Endocardium is necessary for cardiomyocyte movement during heart tube assembly
Holtzman, Nathalia Glickman; Schoenebeck, Jeffrey J; Tsai, Huai-Jen; Yelon, Deborah
Embryonic heart formation requires the union of bilateral populations of cardiomyocytes and their reorganization into a simple tube. Little is known about the morphogenetic mechanisms that coordinate assembly of the heart tube and determine its dimensions. Using time-lapse confocal microscopy to track individual cardiomyocyte movements in the zebrafish embryo, we identify two morphologically and genetically separable phases of cell movement that coordinate heart tube assembly. First, all cardiomyocytes undergo coherent medial movement. Next, peripherally located cardiomyocytes change their direction of movement, angling toward the endocardial precursors and thereby establishing the initial circumference of the nascent heart tube. These two phases of cardiomyocyte behavior are independently regulated. Furthermore, we find that myocardial-endocardial interactions influence the second phase by regulating the induction, direction and duration of cardiomyocyte movement. Thus, the endocardium plays a crucial early role in cardiac morphogenesis, organizing cardiomyocytes into a configuration appropriate for heart tube assembly. Together, our data reveal a dynamic cellular mechanism by which tissue interactions establish organ architecture
PMID: 17537802
ISSN: 0950-1991
CID: 73297
Resistance to echinocandin-class antifungal drugs
Perlin, David S
Invasive fungal infections cause morbidity and mortality in severely ill patients, and limited drug classes restrict treatment choices. The echinocandin drugs are the first new class of antifungal compounds that target the fungal cell wall by blocking beta-1,3-d-glucan synthase. Elevated MIC values with occasional treatment failure have been reported for strains of Candida. Yet, an uncertain correlation exists between clinical failure and elevated MIC values for the echinocandin drugs. Fungi display several adaptive physiological mechanisms that result in elevated MIC values. However, resistance to echinocandin drugs among clinical isolates is associated with amino acid substitutions in two "hot-spot" regions of Fks1, the major subunit of glucan synthase. The mutations, yielding highly elevated MIC values, are genetically dominant and confer cross-resistance to all echinocandin drugs. Prominent Fks1 mutations decrease the sensitivity of glucan synthase for drug by 1000-fold or more, and strains harboring such mutations may require a concomitant increase in drug to reduce fungal organ burdens in animal infection models. The Fks1-mediated resistance mechanism is conserved in a wide variety of Candida spp. and can account for intrinsic reduced susceptibility of certain species. Fks1 mutations confer resistance in both yeasts and moulds suggesting that this mechanism is pervasive in the fungal kingdom.
PMCID:2696280
PMID: 17569573
ISSN: 1368-7646
CID: 310182
CD81, a cell cycle regulator, is a novel target for histone deacetylase inhibition in glioma cells
Gensert, JoAnn M; Baranova, Oxana V; Weinstein, David E; Ratan, Rajiv R
Recent advances in cancer cell biology have focused on histone deacetylase inhibitors (HDACi's) because they target pathways critical to the development and progression of disease. In particular, HDACi's can induce expression of epigenetically silenced genes that promote growth arrest, differentiation and cell death. In glioma cells, one such repressed gene is the tetraspanin CD81, which regulates cytostasis in various cell lines and in astrocytes, the major cellular component of gliomas. Our studies show that HDACi's, trichostatin and sodium butyrate, promote growth arrest and differentiation with negligible cell death in glioma cells and induce expression of CD81 and cyclin-dependent kinase inhibitor 1A (p21(CIP/WAF-1)), another regulator of cytostasis in astrocytes. Interference RNA knock-down of CD81 abrogates cytostasis promoted by HDAC inhibition indicating that HDACi-induced CD81 is responsible for growth arrest. Induction of CD81 expression through HDAC inhibition is a novel strategy to promote growth arrest in glioma cells.
PMID: 17481908
ISSN: 0969-9961
CID: 2356892
Economical LED based, real-time, in vivo imaging of murine corneal wound healing
Ghoghawala, S Y; Mannis, M J; Murphy, C J; Rosenblatt, M I; Isseroff, R R
An optimal system for monitoring in vivo corneal wound healing is inexpensive, has utility for wounding and imaging, and is able to provide previews before photography. We outline such an imaging system that takes advantage of a consumer digital camera and an LED-based light source for fluorescein excitation. Using FVB/NJ mice, 2mm diameter, circular, axial corneal epithelial defects were created using a crescent blade. The corneal wounds were imaged every four hours until healed using a Nikon Coolpix 5400 camera attached to a Nikon SMZ-10A stereomicroscope, using the illumination from a 16 LED 464nm flashlight. The wound area was calculated, and the linear regressions of the linear phase of wound healing were compared using the F-test. The slopes of the linear regressions for the 6 trials of 4 mice/trial had an average of -52.95microm/h (SEM=0.55microm/h) and were statistically equivalent (p>0.05). The mean of the R(2) values for the linear regressions was 0.9546 (SEM=0.0121). The equivalent linear regressions and R(2)>0.90 suggest that the imaging system could precisely monitor the wound healing of multiple trials and of animals within each trial, respectively. Using a consumer digital camera and LED-based illumination, we have established a system that is economical, is used in both wounding and imaging, is operated by a single person, and is able to provide real-time previews to monitor corneal wound healing precisely
PMID: 17445800
ISSN: 0014-4835
CID: 133031
Host cell responses to Chlamydia pneumoniae in gamma interferon-induced persistence overlap those of productive infection and are linked to genes involved in apoptosis, cell cycle, and metabolism
Eickhoff, Meike; Thalmann, Jessica; Hess, Simone; Martin, Myriam; Laue, Thomas; Kruppa, Joachim; Brandes, Gudrun; Klos, Andreas
The respiratory pathogen Chlamydia (Chlamydophila) pneumoniae is associated with chronic diseases, including atherosclerosis and giant-cell arteritis, which are accompanied by the occurrence of these obligate intracellular bacteria in blood vessels. There, C. pneumoniae seems to be present in a persistent state. Persistence is characterized by modified bacterial metabolism and morphology, as well as a reversible arrest of chlamydial development. In cell culture, this persistent state can be induced by gamma interferon (IFN-gamma). To elucidate this long-term interaction between chlamydiae and their host cells, microarray screening on epithelial HeLa cells was performed. Transcription of persistently (and productively) infected cells was compared with that of mock-infected cells. Sixty-six host cell genes were regulated at 24 h and/or 96 h of IFN-gamma-induced persistence. Subsequently, a set of 17 human host cell genes related to apoptosis, cell cycle, or metabolism was identified as permanently up- or down-regulated by real-time PCR. Some of these chlamydia-dependent host cell responses were diminished or even absent in the presence of rifampin. However, other expression patterns were not altered by the inhibition of bacterial RNA polymerase, suggesting two different modes of host cell activation. Thus, in the IFN-gamma model, the persisting bacteria cause long-lasting changes in the expression of genes coding for functionally important proteins. They might be potential drug targets for the treatment of persistent C. pneumoniae infections.
PMCID:1932845
PMID: 17353287
ISSN: 0019-9567
CID: 1267132
Workgroup report: incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies
Coecke, Sandra; Goldberg, Alan M; Allen, Sandra; Buzanska, Leonora; Calamandrei, Gemma; Crofton, Kevin; Hareng, Lars; Hartung, Thomas; Knaut, Holger; Honegger, Paul; Jacobs, Miriam; Lein, Pamela; Li, Abby; Mundy, William; Owen, David; Schneider, Steffen; Silbergeld, Ellen; Reum, Torsten; Trnovec, Tomas; Monnet-Tschudi, Florianne; Bal-Price, Anna
This is the report of the first workshop on Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity (DNT) Testing into International Hazard and Risk Assessment Strategies, held in Ispra, Italy, on 19-21 April 2005. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and jointly organized by ECVAM, the European Chemical Industry Council, and the Johns Hopkins University Center for Alternatives to Animal Testing. The primary aim of the workshop was to identify and catalog potential methods that could be used to assess how data from in vitro alternative methods could help to predict and identify DNT hazards. Working groups focused on two different aspects: a) details on the science available in the field of DNT, including discussions on the models available to capture the critical DNT mechanisms and processes, and b) policy and strategy aspects to assess the integration of alternative methods in a regulatory framework. This report summarizes these discussions and details the recommendations and priorities for future work
PMCID:1892131
PMID: 17589601
ISSN: 0091-6765
CID: 90758
Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins
Sgaier, Sema K; Lao, Zhimin; Villanueva, Melissa P; Berenshteyn, Frada; Stephen, Daniel; Turnbull, Rowena K; Joyner, Alexandra L
The genetic pathways that partition the developing nervous system into functional systems are largely unknown. The engrailed (En) homeobox transcription factors are candidate regulators of this process in the dorsal midbrain (tectum) and anterior hindbrain (cerebellum). En1 mutants lack most of the tectum and cerebellum and die at birth, whereas En2 mutants are viable with a smaller cerebellum and foliation defects. Our previous studies indicated that the difference in phenotypes is due to the earlier expression of En1 as compared with En2, rather than differences in protein function, since knock-in mice expressing En2 in place of En1 have a normal brain. Here, we uncovered a wider spectrum of functions for the En genes by generating a series of En mutant mice. First, using a conditional allele we demonstrate that En1 is required for cerebellum development only before embryonic day 9, but plays a sustained role in forming the tectum. Second, by removing the endogenous En2 gene in the background of En1 knock-in alleles, we show that Drosophila en is not sufficient to sustain midbrain and cerebellum development in the absence of En2, whereas En2 is more potent than En1 in cerebellum development. Third, based on a differential sensitivity to the dose of En1/2, our studies reveal a genetic subdivision of the tectum into its two functional systems and the medial cerebellum into four regions that have distinct circuitry and molecular coding. Our study suggests that an ;engrailed code' is integral to partitioning the tectum and cerebellum into functional domains
PMCID:2840613
PMID: 17537797
ISSN: 0950-1991
CID: 73296