Searched for: school:SOM
Department/Unit:Cell Biology
Rapid conduction and the evolution of giant axons and myelinated fibers
Hartline, D K; Colman, D R
Nervous systems have evolved two basic mechanisms for increasing the conduction speed of the electrical impulse. The first is through axon gigantism: using axons several times larger in diameter than the norm for other large axons, as for example in the well-known case of the squid giant axon. The second is through encasing axons in helical or concentrically wrapped multilamellar sheets of insulating plasma membrane--the myelin sheath. Each mechanism, alone or in combination, is employed in nervous systems of many taxa, both vertebrate and invertebrate. Myelin is a unique way to increase conduction speeds along axons of relatively small caliber. It seems to have arisen independently in evolution several times in vertebrates, annelids and crustacea. Myelinated nerves, regardless of their source, have in common a multilamellar membrane wrapping, and long myelinated segments interspersed with 'nodal' loci where the myelin terminates and the nerve impulse propagates along the axon by 'saltatory' conduction. For all of the differences in detail among the morphologies and biochemistries of the sheath in the different myelinated animal classes, the function is remarkably universal.
PMID: 17208176
ISSN: 0960-9822
CID: 605802
An optimized vaccine vector based on recombinant vesicular stomatitis virus gives high-level, long-term protection against Yersinia pestis challenge
Palin, Amy; Chattopadhyay, Anasuya; Park, Steven; Delmas, Guillaume; Suresh, Rema; Senina, Svetlana; Perlin, David S; Rose, John K
We have developed recombinant vesicular stomatitis virus (VSV) vectors expressing the Yersinia pestis lcrV gene. These vectors, given intranasally to mice, induced high antibody titers to the LcrV protein and protected against intranasal (pulmonary) challenge with Y. pestis. High-level protection was dependent on using an optimized VSV vector that expressed high levels of the LcrV protein from an lcrV gene placed in the first position in the VSV genome, followed by a single boost. This VSV-based vaccine vector system has potential as a plague vaccine protecting against virulent strains lacking the F1 protein.
PMID: 16959385
ISSN: 0264-410x
CID: 310222
Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe
Egger, Boris; Boone, Jason Q; Stevens, Naomi R; Brand, Andrea H; Doe, Chris Q
BACKGROUND:The choice of a stem cell to divide symmetrically or asymmetrically has profound consequences for development and disease. Unregulated symmetric division promotes tumor formation, whereas inappropriate asymmetric division affects organ morphogenesis. Despite its importance, little is known about how spindle positioning is regulated. In some tissues cell fate appears to dictate the type of cell division, whereas in other tissues it is thought that stochastic variation in spindle position dictates subsequent sibling cell fate. RESULTS:Here we investigate the relationship between neural progenitor identity and spindle positioning in the Drosophila optic lobe. We use molecular markers and live imaging to show that there are two populations of progenitors in the optic lobe: symmetrically dividing neuroepithelial cells and asymmetrically dividing neuroblasts. We use genetically marked single cell clones to show that neuroepithelial cells give rise to neuroblasts. To determine if a change in spindle orientation can trigger a neuroepithelial to neuroblast transition, we force neuroepithelial cells to divide along their apical/basal axis by misexpressing Inscuteable. We find that this does not induce neuroblasts, nor does it promote premature neuronal differentiation. CONCLUSION/CONCLUSIONS:We show that symmetrically dividing neuroepithelial cells give rise to asymmetrically dividing neuroblasts in the optic lobe, and that regulation of spindle orientation and division symmetry is a consequence of cell type specification, rather than a mechanism for generating cell type diversity.
PMCID:1779784
PMID: 17207270
ISSN: 1749-8104
CID: 5192922
Studies of DNA-protein interactions at the single molecule level with magnetic tweezers [Meeting Abstract]
Allemand, J.-F; Bensimon, D; Charvin, G; Croquette, V; Lia, G; Lionnet, T; Neuman, KC; Saleh, OA; Yokota, H
The development of tools to manipulate and study single biomolecules (DNA, RNA, proteins) has opened a new vista on the study of their mechanical properties and their joint interactions. In this short review we will focus on (single and double stranded) DNA and its interactions with various classes of proteins: structural DNA binding proteins such as gene repressors (e.g., the Galactose Repressor, GalR) and mechano-chemical enzymes that alter the DNA's topology (topoisomerases), unwind it (helicases) or translocate it (FtsK). We will show how the new tools at our disposal can be used to gain an unprecedented description of the binding properties (on and off-times) and the enzymes' kinetic constants that are often out of reach of more classical, bulk techniques.
ISI:000245665200006
ISSN: 0075-8450
CID: 2385422
Voltage-dependent calcium channels in mammalian spermatozoa revisited
Benoff, Susan; Chu, Charles C; Marmar, Joel L; Sokol, Rebecca Z; Goodwin, Leslie O; Hurley, Ian R
The last few years have seen an explosion in the number of voltage-dependent ion channel sequences detected in sperm and testes. The complex structural paradigm of these channels is now known to include a pore-forming alpha1 subunit(s) whose electrophysiological properties are modulated by an intracellular beta subunit, a disulfide-linked complex of a membrane-spanning delta subunit with an extracellular alpha2 subunit, and a transmembrane gamma subunit. Many of these are alternatively spliced. Furthermore, the known number of genes coding each subtype has expanded significantly (10 alpha1, 4 beta, 4 alpha2delta, 8 gamma). Recently, the CatSper gene family has been characterized based on similarity to the voltage-dependent calcium channel alpha1 subunit. From among this multiplicity, a wide cross-section is active in sperm, including many splice variants. For example, expression of the various alpha1 subunits appears strictly localized in discrete domains of mature sperm, and seems to control distinct physiological roles such as cellular signaling pathways. These include alpha1 alternative splicing variants that are regulated by ions passed by channels in developing sperm. Various combinations of ion channel sequence variants have been studies in research models and in a variety of human diseases, including male infertility. For example, rats that are genetically resistant to testes damage by lead seem to respond to lead ions by increasing alpha1 alternative splicing. In contrast, in varicocele-associated male infertility, the outcome from surgical correction correlates with suppression of alpha1 alternative splicing, Ion channel blockers remain attractive model contraceptive drugs because of their ability to modulate cholesterol levels. However, the large number of sperm ion channel variants shared with other cell types make ion channels less attractive targets for male contraceptive development than a few years ago. In this review, the genetics, structure and function of voltage-dependent calcium channels and related CatSper molecules will be discussed, and several practical clinical applications associated with these channels will be reported
PMID: 17127392
ISSN: 1093-9946
CID: 132239
The cyclopiazonic acid inhibitory complex reveals new insights into the sareoplasmic reticulum calcium pump transport cycle [Meeting Abstract]
Moncoq, Karine; Young, Howard S
ISI:000243972400033
ISSN: 0006-3495
CID: 2444792
Single-molecule micromanipulation techniques
Chapter by: Neuman, KC; Lionnet, T; Allemand, J.-F
in: ANNUAL REVIEW OF MATERIALS RESEARCH by
PALO ALTO : ANNUAL REVIEWS, 2007
pp. 33-67
ISBN:
CID: 2385432
Geometric approach to segmentation and protein localization in cell culture assays
Raman, S; Maxwell, C A; Barcellos-Hoff, M H; Parvin, B
Cell-based fluorescence imaging assays are heterogeneous and require the collection of a large number of images for detailed quantitative analysis. Complexities arise as a result of variation in spatial nonuniformity, shape, overlapping compartments and scale (size). A new technique and methodology has been developed and tested for delineating subcellular morphology and partitioning overlapping compartments at multiple scales. This system is packaged as an integrated software platform for quantifying images that are obtained through fluorescence microscopy. Proposed methods are model based, leveraging geometric shape properties of subcellular compartments and corresponding protein localization. From the morphological perspective, convexity constraint is imposed to delineate and partition nuclear compartments. From the protein localization perspective, radial symmetry is imposed to localize punctate protein events at submicron resolution. Convexity constraint is imposed against boundary information, which are extracted through a combination of zero-crossing and gradient operator. If the convexity constraint fails for the boundary then positive curvature maxima are localized along the contour and the entire blob is partitioned into disjointed convex objects representing individual nuclear compartment, by enforcing geometric constraints. Nuclear compartments provide the context for protein localization, which may be diffuse or punctate. Punctate signal are localized through iterative voting and radial symmetries for improved reliability and robustness. The technique has been tested against 196 images that were generated to study centrosome abnormalities. Corresponding computed representations are compared against manual counts for validation
PMID: 17286692
ISSN: 0022-2720
CID: 83232
The parallelization of SPIDER on distributed-memory computers using MPI
Yang, Chao; Penczek, Pawel A; Leith, ArDean; Asturias, Francisco J; Ng, Esmond G; Glaeser, Robert M; Frank, Joachim
We describe the strategies and implementation details we employed to parallelize the SPIDER software package on distributed-memory parallel computers using the message passing interface (MPI). The MPI-enabled SPIDER preserves the interactive command line and batch interface used in the sequential version of SPIDER, thus does not require users to modify their existing batch programs. We show the excellent performance of the MPI-enabled SPIDER when it is used to perform multi-reference alignment and 3-D reconstruction operations on a number of different computing platforms. We point out some performance issues when the MPI-enabled SPIDER is used for a complete 3-D projection matching refinement run, and propose several ways to further improve the parallel performance of SPIDER on distributed-memory machines
PMID: 16859923
ISSN: 1047-8477
CID: 66293
Application of the iterative helical real-space reconstruction method to large membranous tubular crystals of P-type ATPases
Pomfret, Andrew J; Rice, William J; Stokes, David L
Since the development of three-dimensional helical reconstruction methods in the 1960's, advances in Fourier-Bessel methods have facilitated structure determination to near-atomic resolution. A recently developed iterative helical real-space reconstruction (IHRSR) method provides an alternative that uses single-particle analysis in conjunction with the imposition of helical symmetry. In this work, we have adapted the IHRSR algorithm to work with frozen-hydrated tubular crystals of P-type ATPases. In particular, we have implemented layer-line filtering to improve the signal-to-noise ratio, Wiener-filtering to compensate for the contrast transfer function, solvent flattening to improve reference reconstructions, out-of-plane tilt compensation to deal with flexibility in three dimensions, systematic calculation of Fourier shell correlations to track the progress of the refinement, and tools to control parameters as the refinement progresses. We have tested this procedure on datasets from Na(+)/K(+)-ATPase, rabbit skeletal Ca(2+)-ATPase and scallop Ca(2+)-ATPase in order to evaluate the potential for sub-nanometer resolution as well as the robustness in the presence of disorder. We found that Fourier-Bessel methods perform better for well-ordered samples of skeletal Ca(2+)-ATPase and Na(+)/K(+)-ATPase, although improvements to IHRSR are discussed that should reduce this disparity. On the other hand, IHRSR was very effective for scallop Ca(2+)-ATPase, which was too disordered to analyze by Fourier-Bessel methods
PMCID:4040983
PMID: 16879984
ISSN: 1047-8477
CID: 71141