Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13474


Complex genomic rearrangement in CCS-LacZ transgenic mice [Letter]

Stroud, Dina Myers; Darrow, Bruce J; Kim, Sang Do; Zhang, Jie; Jongbloed, Monique R M; Rentschler, Stacey; Moskowitz, Ivan P G; Seidman, Jonathan; Fishman, Glenn I
The cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription. We found rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. Several lines of evidence suggested that regulatory elements from at least one gene, Slco3A1, influenced CCS-restricted reporter gene expression. In embryonic hearts, Slco3A1 was expressed in a spatial pattern similar to the CCS-lacZ transgene and was similarly neuregulin-responsive. At later stages, however, expression patterns of the transgene and Slco3A1 diverged, suggesting that the Slco3A1 locus may be necessary, but not sufficient to confer CCS-specific transgene expression in the CCS-lacZ line
PMCID:3635834
PMID: 17269130
ISSN: 1526-954x
CID: 73836

The tripartite synapse: roles for gliotransmission in health and disease

Halassa, Michael M; Fellin, Tommaso; Haydon, Philip G
In addition to being essential supporters of neuronal function, astrocytes are now recognized as active elements in the brain. Astrocytes sense and integrate synaptic activity and, depending on intracellular Ca(2+) levels, release gliotransmitters (e.g. glutamate, d-serine and ATP) that have feedback actions on neurons. Recent experimental results have raised the possibility that quantitative variations in gliotransmission might contribute to disorders of the nervous system. Here, we discuss targeted molecular genetic approaches that have demonstrated that alterations in protein expression in astrocytes can lead to serious changes in neuronal function. We also introduce the concept of 'astrocyte activation spectrum' in which enhanced and reduced gliotransmission might contribute to epilepsy and schizophrenia, respectively. The results of future experimental tests of the astrocyte activation spectrum, which relates gliotransmission to neurological and psychiatric disorders, might point to a new therapeutic target in the brain.
PMID: 17207662
ISSN: 1471-4914
CID: 587052

H2O2 signaling in the nigrostriatal dopamine pathway via ATP-sensitive potassium channels: issues and answers

Avshalumov, Marat V; Bao, Li; Patel, Jyoti C; Rice, Margaret E
The role of reactive oxygen species (ROS) as signaling agents is increasingly appreciated. Studies of ROS functions in the central nervous system, however, are only in their infancy. Using fast-scan cyclic voltammetry and fluorescence imaging in brain slices, the authors discovered that hydrogen peroxide (H2O2) is an endogenous regulator of dopamine release in the dorsal striatum. Given the key role of dopamine in motor, reward, and cognitive pathways, regulation by H2O2 has implications for normal dopamine function, as well as for dysfunction of dopamine transmission. In this review, data are summarized to show that H2O2 is a diffusible messenger in the striatum, generated downstream from glutamate receptor activation, and an intracellular signal in dopamine neurons of the substantia nigra, generated during normal pacemaker activity. The mechanism by which H2O2 inhibits dopamine release and dopamine cell activity is activation of ATP-sensitive K+ (KATP) channels. Characteristics of the neuronal and glial antioxidant networks required to permit H2O2 signaling, yet prevent oxidative damage, are also considered. Lastly, estimates of physiological H2O2 levels are discussed, and strengths and limitations of currently available methods for H2O2 detection, including fluorescence imaging using dichlorofluorescein (DCF) and the next generation of fluorescent probes, are considered.
PMID: 17115944
ISSN: 1523-0864
CID: 159225

Optical recording of action potentials and other discrete physiological events: a perspective from signal detection theory

Sjulson, Lucas; Miesenbock, Gero
Optical imaging of physiological events in real time can yield insights into biological function that would be difficult to obtain by other experimental means. However, the detection of all-or-none events, such as action potentials or vesicle fusion events, in noisy single-trial data often requires a careful balance of tradeoffs. The analysis of such experiments, as well as the design of optical reporters and instrumentation for them, is aided by an understanding of the principles of signal detection. This review illustrates these principles, using as an example action potential recording with optical voltage reporters.
PMID: 17289930
ISSN: 1548-9221
CID: 394302

Expression of a sorcin missense mutation in the heart modulates excitation-contraction coupling

Collis, Leon P; Meyers, Marian B; Zhang, Jie; Phoon, Colin K L; Sobie, Eric A; Coetzee, William A; Fishman, Glenn I
Sorcin is a Ca2+ binding protein implicated in the regulation of intracellular Ca2+ cycling and cardiac excitation-contraction coupling. Structural and human genetic studies suggest that a naturally occurring sequence variant encoding L112-sorcin disrupts an E-F hand Ca2+ binding domain and may be responsible for a heritable form of hypertension and hypertrophic heart disease. We generated transgenic mice overexpressing L112-sorcin in the heart and characterized the effects on Ca2+ regulation and cardiac function both in vivo and in dissociated cardiomyocytes. Hearts of sorcin(F112L) transgenic mice were mildly dilated but ventricular function was preserved and systemic blood pressure was normal. Sorcin(F112L) myocytes were smaller than control cells and displayed complex alterations in Ca2+ regulation and contractility, including a slowed inactivation of L-type Ca2+ current, enhanced Ca2+ spark width, duration, and frequency, and increased Na+-Ca2+ exchange activity. In contrast, mice with cardiac-specific overexpression of wild-type sorcin displayed directionally opposite effects on L-type Ca2+ channel function and Ca2+ spark behavior. These data further define the role of sorcin in cardiac excitation-contraction coupling and highlight its negative regulation of SR calcium release. Our results also suggest that additional factors may be responsible for the development of cardiac hypertrophy and hypertension in humans expressing the L112-sorcin sequence variant.
PMID: 17130302
ISSN: 1530-6860
CID: 72805

Reproducibility of three whole-brain N-acetylaspartate decline cohorts in relapsing-remitting multiple sclerosis

Gonen, O; Oberndorfer, T A; Inglese, M; Babb, J S; Herbert, J; Grossman, R I
BACKGROUND AND PURPOSE: The cross-sectional rate of whole-brain N-acetylaspartate (NAA, a neuronal cell marker) loss in clinically similar relapsing-remitting multiple sclerosis (RRMS) patients has recently been shown to fall into 3 distinct decline rate strata. Our goal was to test the reproducibility of this observation in a new cohort of RRMS patients. MATERIALS AND METHODS: Sixteen serial patients (12 women, 4 men, median age 38 [27-55] years) with clinically definite RRMS for an average of 5 (0.3-18) years' disease duration and a mean Expanded Disability Status Score of 2.0 (0-6) were studied, once each. Their whole-brain NAA (WBNAA) amounts, obtained with proton MR spectroscopy, were divided by brain volumes (segmented from MR imaging) to yield concentrations suitable for cross-sectional comparisons. RESULTS: Three distinct strata of cross-sectional NAA decline rates were found: -0.031, -0.32, and -1.71 mmol/L/y when disease duration was estimated from confirmed diagnosis, or -0.057, -0.20, and -1.38 mmol/L/y when measured from the first clinical symptom. These rates and their corresponding fractions of the study population were indistinguishable from those reported previously in a different group of 49 clinically similar (mean Expanded Disability Status Score also 2.0) RRMS patients. CONCLUSION: Reproducing the previous cohort's cross-sectional WBNAA decline characteristics in this new group of clinically similar RRMS patients indicates that 3 WBNAA loss strata may be a general attribute of MS. Consequently, WBNAA could serve as a surrogate marker for the global load of neuronal and axonal dysfunction and damage in this disease
PMID: 17296992
ISSN: 0195-6108
CID: 70829

Neurophysiology of prehension. II. Response diversity in primary somatosensory (S-I) and motor (M-I) cortices

Gardner, Esther P; Ro, Jin Y; Babu, K Srinivasa; Ghosh, Soumya
Prehension responses of 76 neurons in primary somatosensory (S-I) and motor (M-I) cortices were analyzed in three macaques during performance of a grasp and lift task. Digital video recordings of hand kinematics synchronized to neuronal spike trains were compared with responses in posterior parietal areas 5 and AIP/7b (PPC) of the same monkeys during seven task stages: 1) approach, 2) contact, 3) grasp, 4) lift, 5) hold, 6) lower, and 7) relax. S-I and M-I firing patterns signaled particular hand actions, rather than overall task goals. S-I responses were more diverse than those in PPC, occurred later in time, and focused primarily on grasping. Sixty-three percent of S-I neurons fired at peak rates during contact and/or grasping. Lift, hold, and lowering excited fewer S-I cells. Only 8% of S-I cells fired at peak rates before contact, compared with 27% in PPC. M-I responses were also diverse, forming functional groups for hand preshaping, object acquisition, and grip force application. M-I activity began < or =500 ms before contact, coinciding with the earliest activity in PPC. Activation of specific muscle groups in the hand was paralleled by matching patterns of somatosensory feedback from S-I needed for efficient performance. These findings support hypotheses that predictive and planning components of prehension are represented in PPC and premotor cortex, whereas performance and feedback circuits dominate activity in M-I and S-I. Somatosensory feedback from the hand to S-I enables real-time adjustments of grasping by connections to M-I and updates future prehension plans through projections to PPC
PMCID:2868365
PMID: 17093113
ISSN: 0022-3077
CID: 71334

Optimizing the precision-per-unit-time of quantitative MR metrics: examples for T1, T2, and DTI

Fleysher, Lazar; Fleysher, Roman; Liu, Songtao; Zaaraoui, Wafaa; Gonen, Oded
Quantitative MR metrics (e.g., T1, T2, diffusion coefficients, and magnetization transfer ratios (MTRs etc)) are often derived from two images collected with one acquisition parameter changed between them (the 'two-point' method). Since a low signal-to-noise-ratio (SNR) adversely affects the precision of these metrics, averaging is frequently used, although improvement accrues slowly-in proportion to the square root of imaging time. Fortunately, the relationship between the images' SNRs and the metric's precision can be exploited to our advantage. Using error propagation rules, we show that for a given sequence, specifying the total imaging time uniquely determines the optimal acquisition protocol. Specifically, instead of changing only one acquisition parameter and repeating the imaging pair until all available time is spent, we propose to adjust all of the parameters and the number of averages at each point according to their contribution to the sought metric's precision. The tactic is shown to increase the precision of the well-known two-point T1, T2, and diffusion coefficients estimation by 13-90% for the same sample, sequence, hardware, and duration. It is also shown that under this general framework, precision accrues faster than the square root of time. Tables of optimal parameters are provided for various experimental scenarios
PMID: 17260375
ISSN: 0740-3194
CID: 71341

Pro-NGF secreted by astrocytes promotes motor neuron cell death

Domeniconi, Marco; Hempstead, Barbara L; Chao, Moses V
It is well established that motor neurons depend for their survival on many trophic factors. In this study, we show that the precursor form of NGF (pro-NGF) can induce the death of motor neurons via engagement of the p75 neurotrophin receptor. The pro-apoptotic activity was dependent upon the presence of sortilin, a p75 co-receptor expressed on motor neurons. One potential source of pro-NGF is reactive astrocytes, which up-regulate the levels of pro-NGF in response to peroxynitrite, an oxidant and producer of free radicals. Indeed, motor neuron viability was sensitive to conditioned media from cultured astrocytes treated with peroxynitrite and this effect could be reversed using a specific antibody against the pro-domain of pro-NGF. These results are consistent with a role for activated astrocytes and pro-NGF in the induction of motor neuron death and suggest a possible therapeutic target for the treatment of motor neuron disease
PMCID:2570110
PMID: 17188890
ISSN: 1044-7431
CID: 71583

Olfactory identity kicked up a NOTCH [Comment]

Fuss, Stefan; Celik, Arzu; Desplan, Claude
PMID: 17259959
ISSN: 1097-6256
CID: 1694752