Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13368


Normal and abnormal tau neurobiology

Duff, Karen
PMID: 17132962
ISSN: 0893-0341
CID: 150688

A caudal mRNA gradient controls posterior development in the wasp Nasonia

Olesnicky, Eugenia C; Brent, Ava E; Tonnes, Lori; Walker, Megan; Pultz, Mary Anne; Leaf, David; Desplan, Claude
One of the earliest steps of embryonic development is the establishment of polarity along the anteroposterior axis. Extensive studies of Drosophila embryonic development have elucidated mechanisms for establishing polarity, while studies with other model systems have found that many of these molecular components are conserved through evolution. One exception is Bicoid, the master organizer of anterior development in Drosophila and higher dipterans, which is not conserved. Thus, the study of anteroposterior patterning in insects that lack Bicoid can provide insight into the evolution of the diversity of body plan patterning networks. To this end, we have established the long germ parasitic wasp Nasonia vitripennis as a model for comparative studies with Drosophila. Here we report that, in Nasonia, a gradient of localized caudal mRNA directs posterior patterning, whereas, in Drosophila, the gradient of maternal Caudal protein is established through translational repression by Bicoid of homogeneous caudal mRNA. Loss of caudal function in Nasonia results in severe segmentation defects. We show that Nasonia caudal is an activator of gap gene expression that acts far towards the anterior of the embryo, placing it atop a cascade of early patterning. By contrast, activation of gap genes in flies relies on redundant functions of Bicoid and Caudal, leading to a lack of dramatic action on gap gene expression: caudal instead plays a limited role as an activator of pair-rule gene expression. These studies, together with studies in short germ insects, suggest that caudal is an ancestral master organizer of patterning, and that its role has been reduced in higher dipterans such as Drosophila.
PMID: 16971471
ISSN: 0950-1991
CID: 1694762

Reduced Ptc or Gli3 function enhances tumorigenicity of Shh-induced medulloblastomas in mice [Meeting Abstract]

Weiner, HL; Pompeiano, M; Mohan, A; Bakst, R; Piedimonte, L; Stephen, D; Babb, JS; Zagzag, D; Turnbull, DH; Joyner, AL
ISI:000240877301305
ISSN: 1522-8517
CID: 70328

The three and one-half year radiology residency [Editorial]

Grossman, Robert I; McGuinness, Georgeann
PMID: 17032842
ISSN: 0195-6108
CID: 70832

Quantitative MR imaging in Alzheimer disease

Ramani, Anita; Jensen, Jens H; Helpern, Joseph A
Alzheimer disease (AD) is the most common type of dementia. It currently affects approximately 4 million people in the United States. AD is a progressive neurodegenerative disorder characterized by the gradual deposition of neuritic plaques and neurofibrillary tangles in the brain, which is thought to occur decades before the onset of clinical symptoms. Identification of people at risk before the clinical appearance of dementia has become a priority due to the potential benefits of therapeutic intervention. Although atrophy of medial temporal lobe structures has been shown to correlate with progression of AD, a growing number of recent reports have indicated that such atrophy may not be specific to AD. To improve diagnostic specificity, new quantitative magnetic resonance (MR) imaging methods are being developed that exploit known pathogenic mechanisms exclusive to AD. This article reviews the MR techniques that are currently available for the diagnostic assessment of AD
PMID: 16990669
ISSN: 0033-8419
CID: 68939

Plaque-associated overexpression of insulin-degrading enzyme in the cerebral cortex of aged transgenic tg2576 mice with Alzheimer pathology

Leal, Maria C; Dorfman, Veronica B; Gamba, Agata Fernandez; Frangione, Blas; Wisniewski, Thomas; Castano, Eduardo M; Sigurdsson, Einar M; Morelli, Laura
It was proposed that insulin-degrading enzyme (IDE) participates in the clearance of amyloid beta (Abeta) in the brain, and its low expression or activity may be relevant for the progression of Alzheimer disease. We performed a longitudinal study of brain level, activity, and distribution of IDE in transgenic mice (Tg2576) expressing the Swedish mutation in human Abeta precursor protein. At 16 months of age, Tg2576 showed a significant 2-fold increment in IDE protein level as compared with 4.5- and 11-month-old animals. The peak of IDE was in synchrony with the sharp accumulation of sodium dodecyl sulfate-soluble Abeta and massive Abeta deposition into plaques. At this stage, IDE appeared surrounding Abeta fibrillar deposits within glial fibrillar acidic protein-positive astrocytes, suggesting that it was locally overexpressed during the Abeta-mediated inflammation process. When primary astrocytes were exposed to fibrillar Abeta in vitro, IDE protein level increased as compared with control, and this effect was reduced by the addition of U0126, a specific inhibitor of the ERK1/2 mitogen-activated protein kinase cascade. We propose that in Tg2576 mice and in contrast to its behavior in Alzheimer brains, active IDE increases with age around plaques as a component of astrocyte activation as a result of Abeta-triggered inflammation
PMID: 17021402
ISSN: 0022-3069
CID: 68945

Subcellular localization of phosphatidylinositol synthesis

Monaco, Marie E; Cassai, Nicholas D; Sidhu, Gurdip S
It is well-established that the endoplasmic reticulum is the major site of phosphatidylinositol (PtdIns) synthesis. The PtdIns synthetic ability of other organelles, such as plasma membrane and nucleus, remains controversial. In the present study, we re-examine this question by comparing PtdIns synthesis in isolated cytoplasts (enucleated cells) with that in corresponding karyoplasts (nuclei surrounded by plasma membrane but lacking most cytoplasmic components). We report that cytoplasts are competent to carry out both basal and stimulated PtdIns synthesis as well as polyphosphoinositide hydrolysis, while karyoplasts can neither synthesize PtdIns nor hydrolyze phosphoinositides in response to agonists. The karyoplasts are, however, capable of synthesizing phosphatidylcholine (PtdCho), as previously reported. From these data, we conclude that PtdIns synthesis is limited to cytoplasmic components, and cannot be sustained by either plasma membrane or nucleus under conditions that permit robust PtdCho synthesis
PMID: 16904631
ISSN: 0006-291x
CID: 95443

Selective engagement of plasticity mechanisms for motor memory storage

Boyden, Edward S; Katoh, Akira; Pyle, Jason L; Chatila, Talal A; Tsien, Richard W; Raymond, Jennifer L
The number and diversity of plasticity mechanisms in the brain raises a central question: does a neural circuit store all memories by stereotyped application of the available plasticity mechanisms, or can subsets of these mechanisms be selectively engaged for specific memories? The uniform architecture of the cerebellum has inspired the idea that plasticity mechanisms like cerebellar long-term depression (LTD) contribute universally to memory storage. To test this idea, we investigated a set of closely related, cerebellum-dependent motor memories. In mutant mice lacking Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV), the maintenance of cerebellar LTD is abolished. Although memory for an increase in the gain of the vestibulo-ocular reflex (VOR) induced with high-frequency stimuli was impaired in these mice, memories for decreases in VOR gain and increases in gain induced with low-frequency stimuli were intact. Thus, a particular plasticity mechanism need not support all cerebellum-dependent memories, but can be engaged selectively according to the parameters of training
PMID: 16982426
ISSN: 0896-6273
CID: 136737

Temporal processing and adaptation in the songbird auditory forebrain

Nagel, Katherine I; Doupe, Allison J
Songbird auditory neurons must encode the dynamics of natural sounds at many volumes. We investigated how neural coding depends on the distribution of stimulus intensities. Using reverse-correlation, we modeled responses to amplitude-modulated sounds as the output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities depend on the stimulus mean and variance. Filter shape depended strongly on mean amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast) of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells. Both filter and gain changes occurred rapidly after a change in statistics, suggesting that they represent nonlinearities in processing. These changes may permit neurons to signal effectively over a wider dynamic range and are reminiscent of findings in other sensory systems.
PMID: 16982428
ISSN: 0896-6273
CID: 1072492

Early presynaptic changes during plasticity in cultured hippocampal neurons

Ninan, Ipe; Liu, Shumin; Rabinowitz, Daniel; Arancio, Ottavio
Long-lasting increase in synaptic strength is thought to underlie learning. An explosion of data has characterized changes in postsynaptic (pstS) AMPA receptor cycling during potentiation. However, changes occurring within the presynaptic (prS) terminal remain largely unknown. We show that appearance of new release sites during potentiation between cultured hippocampal neurons is due to (a) conversion of nonrecycling sites to recycling sites, (b) formation of new releasing sites from areas containing diffuse staining for the prS marker Vesicle-Associated Membrane Protein-2 and (c) budding of new recycling sites from previously existing recycling sites. In addition, potentiation is accompanied by a release probability increase in pre-existing boutons depending upon their individual probability. These prS changes precede and regulate fluorescence increase for pstS GFP-tagged-AMPA-receptor subunit GluR1. These results suggest that potentiation involves early changes in the prS terminal including remodeling and release probability increase of pre-existing synapses
PMCID:1570425
PMID: 16957772
ISSN: 0261-4189
CID: 71564