Searched for: school:SOM
Department/Unit:Cell Biology
Unfolded protein response in Drosophila: why another model can make it fly
Ryoo, Hyung Don; Steller, Hermann
The unfolded protein response (UPR) is an intracellular signaling pathway that is activated in response to stress in the endoplasmic reticulum (ER). UPR can effectively cope with stress by reducing the amount of misfolded protein overload in this subcellular organelle. Significantly, ER-stress is associated with various neurodegenerative disorders, diabetes and cancer, where UPR affects the course of disease manifestation in many cases. While significant progress has been made in various experimental systems over the years, suitable models for in vivo analyses of UPR and disease remain scarce. In this regard, recent developments of Drosophila markers and genetic tools for UPR studies provide powerful means to investigate the connection between UPR and disease in vivo. Here, we review the molecular components of the Drosophila UPR as well as the disease models that may be affected by this signaling pathway
PMID: 17387279
ISSN: 1551-4005
CID: 71606
Cholesterol starvation induces differentiation of human leukemia HL-60 cells
Sanchez-Martin, Carolina C; Davalos, Alberto; Martin-Sanchez, Covadonga; de la Pena, Gema; Fernandez-Hernando, Carlos; Lasuncion, Miguel A
Cholesterol metabolism is particularly active in malignant, proliferative cells, whereas cholesterol starvation has been shown to inhibit cell proliferation. Inhibition of enzymes involved in cholesterol biosynthesis at steps before the formation of 7-dehydrocholesterol has been shown to selectively affect cell cycle progression from G(2) phase in human promyelocytic HL-60 cells. In the present work, we explored whether cholesterol starvation by culture in cholesterol-free medium and treatment with different distal cholesterol biosynthesis inhibitors induces differentiation of HL-60 cells. Treatment with SKF 104976, an inhibitor of lanosterol 14-alpha demethylase, or with zaragozic acid, which inhibits squalene synthase, caused morphologic changes alongside respiratory burst activity and expression of cluster of differentiation antigen 11c (CD11c) but not cluster of differentiation antigen 14. These effects were comparable to those produced by all-trans retinoic acid, which induces HL-60 cells to differentiate following a granulocyte lineage. In contrast, they differed from those produced by vitamin D(3), which promotes monocyte differentiation. The specificity of the response was confirmed by addition of cholesterol to the culture medium. Treatment with PD 98059, an inhibitor of extracellular signal-regulated kinase, abolished both the activation of NADPH oxidase and the expression of the CD11c marker. In sharp contrast, BM 15766, which inhibits sterol Delta(7)-reductase, failed to induce differentiation or arrest cell proliferation. These results show that changes in the sterol composition may trigger a differentiation response and highlight the potential of cholesterol pathway inhibition as a possible tool for use in cancer therapy
PMID: 17409448
ISSN: 0008-5472
CID: 103203
Drosophila mitochondrial membrane-bound tafazzin protein is a transacylase [Meeting Abstract]
Xu, Yang; Ren, Mindong; Malhotra, Ashim; Lee, Louis; Zhang, Jin; Blanck, Thomas JJ; Schlame, Michael
ISI:000245708505348
ISSN: 0892-6638
CID: 2544842
Purification and characterization of drosophila taffazin: Discovery of the first phospholipid transacylase [Meeting Abstract]
Malhotra, Ashim; Xu, Yang; Ren, Mindong; Schlame, Michael
ISI:000245708505343
ISSN: 0892-6638
CID: 2544832
Vascular endothelial growth factor and angiopoietin are required for prostate regeneration
Wang, Gui-Min; Kovalenko, Bruce; Huang, Yili; Moscatelli, David
BACKGROUND: The regulation of the prostate size by androgens may be partly the result of androgen effects on the prostatic vasculature. We examined the effect of changes in androgen levels on the expression of a variety of angiogenic factors in the mouse prostate and determined if vascular endothelial growth factor (VEGF)-A and the angiopoietins are involved in the vascular response to androgens. METHODS: Expression of angiogenic factors in prostate was quantitated using real-time PCR at different times after castration and after administration of testosterone to castrated mice. Angiopoietins were localized in prostate by immunohistochemistry and in situ hybridization. The roles of VEGF and the angiopoietins in regeneration of the prostate were examined in mice inoculated with cells expressing soluble VEGF receptor-2 or soluble Tie-2. RESULTS: Castration resulted in a decrease in VEGF-A, VEGF-B, VEGF-C, placenta growth factor, FGF-2, and FGF-8 expression after 1 day. In contrast, VEGF-D mRNA levels increased. No changes in angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), hepatocyte growth factor, VEGF receptor-1, VEGF receptor-2, or tie-2 mRNA levels were observed. Administration of testosterone to castrated mice had the opposite effect on expression of these angiogenic factors. Ang-2 was expressed predominantly in prostate epithelial cells whereas Ang-1 was expressed in epithelium and smooth muscle. Inoculation of mice with cells expressing soluble VEGF receptor-2 or Tie-2 blocked the increase in vascular density normally observed after administration of testosterone to castrated mice. The soluble receptors also blocked the increase in prostate weight and proliferation of prostatic epithelial cells. CONCLUSION: VEGF-A and angiopoietins are required for the vascular response to androgens and for the ability of the prostate to regenerate in response to androgens
PMCID:1865098
PMID: 17221843
ISSN: 0270-4137
CID: 71923
Effect of mechanical stimuli on skeletal regeneration around implants
Leucht, Philipp; Kim, Jae-Beom; Wazen, Rima; Currey, Jennifer A; Nanci, Antonio; Brunski, John B; Helms, Jill A
Due to the aging population and the increasing need for total joint replacements, osseointegration is of a great interest for various clinical disciplines. Our objective was to investigate the molecular and cellular foundation that underlies this process. Here, we used an in vivo mouse model to study the cellular and molecular response in three distinct areas of unloaded implants: the periosteum, the gap between implant and cortical bone, and the marrow space. Our analyses began with the early phases of healing, and continued until the implants were completely osseointegrated. We investigated aspects of osseointegration ranging from vascularization, cell proliferation, differentiation, and bone remodeling. In doing so, we gained an understanding of the healing mechanisms of different skeletal tissues during unloaded implant osseointegration. To continue our analysis, we used a micromotion device to apply a defined physical stimulus to the implants, and in doing so, we dramatically enhanced bone formation in the peri-implant tissue. By comparing strain measurements with cellular and molecular analyses, we developed an understanding of the correlation between strain magnitudes and fate decisions of cells shaping the skeletal regenerate.
PMCID:1987325
PMID: 17175211
ISSN: 1873-2763
CID: 1216412
Genome wide expression profiles associated with 5-Aza-2'-deoxy-cytidine-induced apoptosis in melanoma cells [Meeting Abstract]
Molinaro, A; Krauthammer, M; Kluger, Y; Cheng, E; Deng, M; Mor, G; Brailey, L; Sznol, M; Kluger, H; Ariyan, S; McNiff, J; Narayan, D; Shivakumar, P; Pelizzola, M; Kovacs, D; Picardo, M; Halaban, R
ISI:000245387800166
ISSN: 0022-202x
CID: 71617
Deletion of protein kinase C-epsilon signaling pathway induces glomerulosclerosis and tubulointerstitial fibrosis in vivo
Meier, Matthias; Menne, Jan; Park, Joon-Keun; Holtz, Marcel; Gueler, Faikah; Kirsch, Thorsten; Schiffer, Mario; Mengel, Michael; Lindschau, Carsten; Leitges, Michael; Haller, Hermann
Protein kinase C (PKC), a family of 12 distinct serine-threonine kinases, is an important intracellular signaling pathway involved in various cellular functions, such as proliferation, hypertrophy, apoptosis, and adhesion. PKC-epsilon, a novel PKC isoform that is activated in the diabetic kidney, has been demonstrated to have a central role in the underlying signaling infrastructure of myocardial ischemia and hypertrophy. The renal phenotype of PKC-epsilon(-/-) mice was studied with regard to renal hypertrophy and fibrosis. PKC-epsilon(-/-) deficient knockout mice were generated and then killed after 6, 16, and 26 wk of life. Kidney/body weight ratio did not show any significant group difference compared with appropriate wild-type controls. Urinary albumin/creatinine ratio remained normal in wild-type mice, whereas PKC-epsilon(-/-) mice after 6 and 16 wk showed elevated albuminuria. Masson-Goldner staining revealed that tubulointerstitial fibrosis and mesangial expansion were significantly increased in PKC-epsilon(-/-) mice. However, this profibrotic phenotype was not observed in other organs, such as liver and lung. Immunohistochemistry of the kidneys from PKC-epsilon(-/-) mice showed increased renal fibronectin and collagen IV expression that was further aggravated in the streptozotocin-induced diabetic stress model. Furthermore, TGF-beta(1), phospho-Smad2, and phospho-p38 mitogen-activate protein kinase expression was increased in PKC-epsilon(-/-) mice, suggesting a regulatory role of PKC-epsilon in TGF-beta(1) and its signaling pathway in the kidney. These results indicate that deletion of PKC-epsilon mediates renal fibrosis and that TGF-beta1 and its signaling pathway might be involved. Furthermore, these data suggest that activation of PKC-epsilon in the diabetic state may rather represent a protective response to injury than be a mediator of renal injury
PMID: 17360953
ISSN: 1046-6673
CID: 76625
ADAM12: a potential target for treatment of chronic wounds [Meeting Abstract]
Harsha, A; Stojadinovic, O; Loomis, CA; Blobel, CP; Tomic-Canic, M
ISI:000245387800220
ISSN: 0022-202x
CID: 71618
Proteomic analysis of exfoliation deposits
Ovodenko, Boris; Rostagno, Agueda; Neubert, Thomas A; Shetty, Vivekananda; Thomas, Stefani; Yang, Austin; Liebmann, Jeffrey; Ghiso, Jorge; Ritch, Robert
PURPOSE: To increase knowledge of the biochemical composition of lenticular exfoliation material (XFM) by using proteomic approaches. METHODS: Anterior lens capsules from patients with and without exfoliation syndrome (XFS) were homogenized in formic acid and subjected to cyanogen bromide (CNBr) cleavage, and the pattern of chemically generated fragments was compared by SDS-PAGE after silver staining. Unique XFS bands not present in control cases were excised, digested with TPCK-trypsin, and the resultant peptides sequenced with quadrupole time-of-flight mass spectrometry (MS). In parallel experiments, CNBr-fragmented XFM was separately digested in solution with trypsin and elastase, and the resultant peptide mixture was analyzed by liquid chromatography coupled to tandem MS followed by identification through homology searches at nonredundant protein databases. Immunolocalization of the MS-identified components were performed in XFS versus control samples by using conventional immunohistochemical methods and light microscopy. RESULTS: In addition to fibrillin-1, fibronectin, vitronectin, laminin, and amyloid P-component, which are well-known extracellular matrix and basement membrane components of XFM, the proteomic approaches identified the multifunctional protein clusterin and tissue inhibitor of metalloprotease (TIMP)-3 as well as novel molecules, among them fibulin-2, desmocollin-2, the glycosaminoglycans syndecan-3, and versican, membrane metalloproteases of the ADAM family (a disintegrin and metalloprotease), and the initiation component of the classic complement activation pathway C1q. In all cases, classic immunohistochemistry confirmed their location in XFM. CONCLUSIONS: A novel solubilization strategy combined with sensitive proteomic analysis emphasizes the complexity of the XFS deposits and opens new avenues to study the molecular mechanisms involved in the pathogenesis and progression of XFS
PMID: 17389470
ISSN: 0146-0404
CID: 71391