Searched for: school:SOM
Department/Unit:Neuroscience Institute
Twenty-four-channel high-impedance glove array for hand and wrist MRI at 3T
Zhang, Bei; Wang, Bili; Ho, Justin; Hodono, Shota; Burke, Christopher; Lattanzi, Riccardo; Vester, Markus; Rehner, Robert; Sodickson, Daniel; Brown, Ryan; Cloos, Martijn
PURPOSE/OBJECTIVE:To present a novel 3T 24-channel glove array that enables hand and wrist imaging in varying postures. METHODS:The glove array consists of an inner glove holding the electronics and an outer glove protecting the components. The inner glove consists of four main structures: palm, fingers, wrist, and a flap that rolls over on top. Each structure was constructed out of three layers: a layer of electrostatic discharge flame-resistant fabric, a layer of scuba neoprene, and a layer of mesh fabric. Lightweight and flexible high impedance coil (HIC) elements were inserted into dedicated tubes sewn into the fabric. Coil elements were deliberately shortened to minimize the matching interface. Siemens Tim 4G technology was used to connect all 24 HIC elements to the scanner with only one plug. RESULTS:The 24-channel glove array allows large motion of both wrist and hand while maintaining the SNR needed for high-resolution imaging. CONCLUSION/CONCLUSIONS:In this work, a purpose-built 3T glove array that embeds 24 HIC elements is demonstrated for both hand and wrist imaging. The 24-channel glove array allows a great range of motion of both the wrist and hand while maintaining a high SNR and providing good theoretical acceleration performance, thus enabling hand and wrist imaging at different postures to extract kinematic information.
PMID: 34971464
ISSN: 1522-2594
CID: 5108352
Sustained endosomal release of a neurokinin-1 receptor antagonist from nanostars provides long-lasting relief of chronic pain
Latorre, Rocco; RamÃrez-Garcia, Paulina D; Hegron, Alan; Grace, James L; Retamal, Jeffri S; Shenoy, Priyank; Tran, Mai; Aurelio, Luigi; Flynn, Bernard; Poole, Daniel P; Klein-Cloud, Rafael; Jensen, Dane D; Davis, Thomas P; Schmidt, Brian L; Quinn, John F; Whittaker, Michael R; Veldhuis, Nicholas A; Bunnett, Nigel W
Soft polymer nanoparticles designed to disassemble and release an antagonist of the neurokinin 1 receptor (NK1R) in endosomes provide efficacious yet transient relief from chronic pain. These micellar nanoparticles are unstable and rapidly release cargo, which may limit the duration of analgesia. We examined the efficacy of stable star polymer nanostars containing the NK1R antagonist aprepitant-amine for the treatment of chronic pain in mice. Nanostars continually released cargo for 24Â h, trafficked through the endosomal system, and disrupted NK1R endosomal signaling. After intrathecal injection, nanostars accumulated in endosomes of spinal neurons. Nanostar-aprepitant reversed mechanical, thermal and cold allodynia and normalized nociceptive behavior more efficaciously than free aprepitant in preclinical models of neuropathic and inflammatory pain. Analgesia was maintained for >10Â h. The sustained endosomal delivery of antagonists from slow-release nanostars provides effective and long-lasting reversal of chronic pain.
PMID: 35533442
ISSN: 1878-5905
CID: 5215272
Differences between human and machine perception in medical diagnosis
Makino, Taro; Jastrzębski, Stanisław; Oleszkiewicz, Witold; Chacko, Celin; Ehrenpreis, Robin; Samreen, Naziya; Chhor, Chloe; Kim, Eric; Lee, Jiyon; Pysarenko, Kristine; Reig, Beatriu; Toth, Hildegard; Awal, Divya; Du, Linda; Kim, Alice; Park, James; Sodickson, Daniel K; Heacock, Laura; Moy, Linda; Cho, Kyunghyun; Geras, Krzysztof J
Deep neural networks (DNNs) show promise in image-based medical diagnosis, but cannot be fully trusted since they can fail for reasons unrelated to underlying pathology. Humans are less likely to make such superficial mistakes, since they use features that are grounded on medical science. It is therefore important to know whether DNNs use different features than humans. Towards this end, we propose a framework for comparing human and machine perception in medical diagnosis. We frame the comparison in terms of perturbation robustness, and mitigate Simpson's paradox by performing a subgroup analysis. The framework is demonstrated with a case study in breast cancer screening, where we separately analyze microcalcifications and soft tissue lesions. While it is inconclusive whether humans and DNNs use different features to detect microcalcifications, we find that for soft tissue lesions, DNNs rely on high frequency components ignored by radiologists. Moreover, these features are located outside of the region of the images found most suspicious by radiologists. This difference between humans and machines was only visible through subgroup analysis, which highlights the importance of incorporating medical domain knowledge into the comparison.
PMCID:9046399
PMID: 35477730
ISSN: 2045-2322
CID: 5205672
Inhibitory co-transmission from midbrain dopamine neurons relies on presynaptic GABA uptake
Melani, Riccardo; Tritsch, Nicolas X
Dopamine (DA)-releasing neurons in the substantia nigra pars compacta (SNcDA) inhibit target cells in the striatum through postsynaptic activation of γ-aminobutyric acid (GABA) receptors. However, the molecular mechanisms responsible for GABAergic signaling remain unclear, as SNcDA neurons lack enzymes typically required to produce GABA or package it into synaptic vesicles. Here, we show that aldehyde dehydrogenase 1a1 (Aldh1a1), an enzyme proposed to function as a GABA synthetic enzyme in SNcDA neurons, does not produce GABA for synaptic transmission. Instead, we demonstrate that SNcDA axons obtain GABA exclusively through presynaptic uptake using the membrane GABA transporter Gat1 (encoded by Slc6a1). GABA is then packaged for vesicular release using the vesicular monoamine transporter Vmat2. Our data therefore show that presynaptic transmitter recycling can substitute for de novo GABA synthesis and that Vmat2 contributes to vesicular GABA transport, expanding the range of molecular mechanisms available to neurons to support inhibitory synaptic communication.
PMCID:9097974
PMID: 35443174
ISSN: 2211-1247
CID: 5217212
Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases
Chang, Andrew; Xiang, Xinyu; Wang, Jing; Lee, Carolyn; Arakhamia, Tamta; Simjanoska, Marija; Wang, Chi; Carlomagno, Yari; Zhang, Guoan; Dhingra, Shikhar; Thierry, Manon; Perneel, Jolien; Heeman, Bavo; Forgrave, Lauren M; DeTure, Michael; DeMarco, Mari L; Cook, Casey N; Rademakers, Rosa; Dickson, Dennis W; Petrucelli, Leonard; Stowell, Michael H B; Mackenzie, Ian R A; Fitzpatrick, Anthony W P
Misfolding and aggregation of disease-specific proteins, resulting in the formation of filamentous cellular inclusions, is a hallmark of neurodegenerative disease with characteristic filament structures, or conformers, defining each proteinopathy. Here we show that a previously unsolved amyloid fibril composed of a 135 amino acid C-terminal fragment of TMEM106B is a common finding in distinct human neurodegenerative diseases, including cases characterized by abnormal aggregation of TDP-43, tau, or α-synuclein protein. A combination of cryoelectron microscopy and mass spectrometry was used to solve the structures of TMEM106B fibrils at a resolution of 2.7 Å from postmortem human brain tissue afflicted with frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP, n = 8), progressive supranuclear palsy (PSP, n = 2), or dementia with Lewy bodies (DLB, n = 1). The commonality of abundant amyloid fibrils composed of TMEM106B, a lysosomal/endosomal protein, to a broad range of debilitating human disorders indicates a shared fibrillization pathway that may initiate or accelerate neurodegeneration.
PMID: 35247328
ISSN: 1097-4172
CID: 5174822
Dental Caries Postradiotherapy in Head and Neck Cancer
Brennan, M T; Treister, N S; Sollecito, T P; Schmidt, B L; Patton, L L; Lin, A; Elting, L S; Helgeson, E S; Lalla, R V
BACKGROUND/UNASSIGNED:Treatment for head and neck cancer (HNC) such as radiotherapy (RT) can lead to numerous acute and chronic head and neck sequelae, including dental caries. The goal of the present study was to measure 2-y changes in dental caries after radiotherapy in patients with HNC and test risk factors for caries increment. METHODS/UNASSIGNED:Cancer and dental disease characteristics, demographics, and oral health practices were documented before and 6, 12, 18, and 24 mo after the start of RT for 572 adult patients with HNC. Patients were eligible if they were age 18 y or older, diagnosed with HNC, and planned to receive RT for treatment of HNC. Caries prevalence was measured as decayed, missing, and filled surfaces (DMFS). The association between change in DMFS and risk factors was evaluated using linear mixed models. RESULTS/UNASSIGNED:= 164), lower salivary flow at follow-up visits was associated with increased DMFS. CONCLUSION/UNASSIGNED:Increased caries is a complication soon after RT in HNC. Fluoride, oral hygiene, dental insurance, and education level had the strongest association with caries increment after radiotherapy to the head and neck region. Thus, intensive oral hygiene measures, including fluoride and greater accessibility of dental care, may contribute to reducing the caries burden after RT in HNC. KNOWLEDGE TRANSFER STATEMENT/UNASSIGNED:The results of this study can be used by clinicians when deciding how to minimize oral complications related to cancer therapy for patients with head and neck cancer. Identification of modifiable factors (e.g., oral hygiene and prescription fluoride compliance) associated with increased caries risk can minimize radiation caries burden.
PMID: 35403479
ISSN: 2380-0852
CID: 5207022
COPD in Smoking and Non-Smoking Community Members Exposed to the World Trade Center Dust and Fumes
Baba, Ridhwan Y; Zhang, Yian; Shao, Yongzhao; Berger, Kenneth I; Goldring, Roberta M; Liu, Mengling; Kazeros, Angeliki; Rosen, Rebecca; Reibman, Joan
BACKGROUND:The characteristics of community members exposed to World Trade Center (WTC) dust and fumes with Chronic Obstructive Pulmonary Disease (COPD) can provide insight into mechanisms of airflow obstruction in response to an environmental insult, with potential implications for interventions. METHODS:We performed a baseline assessment of respiratory symptoms, spirometry, small airway lung function measures using respiratory impulse oscillometry (IOS), and blood biomarkers. COPD was defined by the 2019 GOLD criteria for COPD. Patients in the WTC Environmental Health Center with <5 or ≥5 pack year smoking history were classified as nonsmoker-COPD (ns-COPD) or smoker-COPD (sm-COPD), respectively. MAIN RESULTS/RESULTS:= 0.007). CONCLUSIONS:Spirometry findings and small airway measures, as well as inflammatory markers, differed between patients with ns-COPD and sm-COPD. These findings suggest potential for differing mechanisms of airway injury in patients with WTC environmental exposures and have potential therapeutic implications.
PMCID:8999000
PMID: 35409931
ISSN: 1660-4601
CID: 5192332
Neural representation in M1 and S1 cortex of bilateral hand actions during prehension
Gardner, Esther P; Putrino, David F; Chen Van Daele, Jessie
Bimanual movements that require coordinated actions of the two hands may be coordinated by synchronous bilateral activation of somatosensory and motor cortical areas in both hemispheres, by enhanced activation of individual neurons specialized for bimanual actions, or by both mechanisms. To investigate cortical neural mechanisms that mediate unimanual and bimanual prehension, we compared actions of the left and right hands in a reach to grasp-and-pull instructed-delay task. Spike trains were recorded with multiple electrode arrays placed in the hand area of primary motor (M1) and somatosensory (S1) cortex of the right hemisphere in macaques, allowing us to measure and compare the relative timing, amplitude, and synchronization of cortical activity in these areas as animals grasped and manipulated objects that differed in shape and location. We report that neurons in the right hemisphere show common task-related firing patterns for the two hands but actions of the ipsilateral hand elicited weaker and shorter-duration responses than those of the contralateral hand. We report significant bimanual activation of neurons in M1 but not in S1 cortex when animals have free choice of hand use in prehension tasks. Population ensemble responses in M1 thereby provide an accurate depiction of hand actions during skilled manual tasks. These studies also demonstrate that somatosensory cortical areas serve important cognitive and motor functions in skilled hand actions. Bilateral representation of hand actions may serve an important role in "motor equivalence" when the same movements are performed by either hand and in transfer of skill learning between the hands.NEW & NOTEWORTHY Humans can manipulate small objects with the right or left hand but typically select the dominant hand to handle them. We trained monkeys to grasp and manipulate objects with either hand, while recording neural activity in primary motor (M1) and somatosensory (S1) cortex. Actions of both hands activate M1 neurons, but S1 neurons respond only to the contralateral hand. Bilateral sensitivity in M1 may aid skill transfer between hands after stroke or head injury.
PMCID:8993539
PMID: 35294304
ISSN: 1522-1598
CID: 5200262
Agonist that activates the µ-opioid receptor in acidified microenvironments inhibits colitis pain without side effects
Jiménez-Vargas, Nestor Nivardo; Yu, Yang; Jensen, Dane D; Bok, Diana Daeun; Wisdom, Matthew; Latorre, Rocco; Lopez, Cintya; Jaramillo-Polanco, Josue O; Degro, Claudius; Guzman-Rodriguez, Mabel; Tsang, Quentin; Snow, Zachary; Schmidt, Brian L; Reed, David E; Lomax, Alan Edward; Margolis, Kara Gross; Stein, Christoph; Bunnett, Nigel W; Vanner, Stephen J
OBJECTIVE:The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues. DESIGN/METHODS:Antinociceptive actions of NFEPP and fentanyl were compared in control mice and mice with dextran sodium sulfate colitis by measuring visceromotor responses to colorectal distension. Patch clamp and extracellular recordings were used to assess nociceptor activation. Defecation, respiration and locomotion were assessed. Colonic migrating motor complexes were assessed by spatiotemporal mapping of isolated tissue. NFEPP-induced MOPr signalling and trafficking were studied in human embryonic kidney 293 cells. RESULTS:NFEPP inhibited visceromotor responses to colorectal distension in mice with colitis but not in control mice, consistent with acidification of the inflamed colon. Fentanyl inhibited responses in both groups. NFEPP inhibited the excitability of dorsal root ganglion neurons and suppressed mechanical sensitivity of colonic afferent fibres in acidified but not physiological conditions. Whereas fentanyl decreased defecation and caused respiratory depression and hyperactivity in mice with colitis, NFEPP was devoid of these effects. NFEPP did not affect colonic migrating motor complexes at physiological pH. NFEPP preferentially activated MOPr in acidified extracellular conditions to inhibit cAMP formation, recruit β-arrestins and evoke MOPr endocytosis. CONCLUSION/CONCLUSIONS:In a preclinical IBD model, NFEPP preferentially activates MOPr in acidified microenvironments of inflamed tissues to induce antinociception without causing respiratory depression, constipation and hyperactivity.
PMID: 33785555
ISSN: 1468-3288
CID: 4840882
GENOME-SCALE SCREEN FOR SYNTHETIC DRIVERS OF T-CELL PROLIFERATION [Meeting Abstract]
Legut, M; Gajic, Z; Guarino, M; Daniloski, Z; Rahman, J; Xue, X; Lu, C; Lu, L; Mimitou, E; Hao, S; Davoli, T; Diefenbach, C; Smibert, P; Sanjana, N
The engineering of patient T-cells for adoptive cell therapies has revolutionized the treatment of several cancer types. However, further improvements are needed to increase durability and response rate. While CRISPR-based loss-of-function screens have shown promise for high-throughput identification of genes that modulate T-cell response, these methods have been limited thus far to negative regulators of T-cell functions, and raise safety concerns due to the permanent nature of genome modification. Here we identify positive T-cell regulators via overexpression of ~12,000 barcoded human open reading frames (ORFs). Using this genome-scale ORF screen, we find modulator genes that may not normally be expressed by T-cells. The top-ranked genes increased primary human T-cell proliferation, activation, and secretion of key cytokines. In addition, we developed a single-cell genomics method for high-throughput quantification of the transcriptome and surface proteome in ORF-engineered T-cells. The top-ranked ORF, lymphotoxin beta receptor (LTBR), is typically expressed by myeloid cells but absent in lymphocytes. When expressed in T-cells, LTBR induced profound transcriptional and epigenomic remodeling, resulting in an increase in T-cell stemness and effector functions, as well as resistance to apoptosis and exhaustion in chronic stimulation settings. Using mutagenesis and epistasis approaches, we demonstrated that LTBR constitutive activates the canonical NFkB pathway via ligand shortcircuiting and tonic signaling. Expression of several top-ranked genes, including LTBR, improved antigen-specific chimeric antigen receptor (CAR) T-cell responses in healthy donors and diffuse large B-cell lymphoma patients. Finally, the top-ranked genes discovered in alphabeta T-cells also improved antigen-specific responses of gammadelta T-cells, highlighting the potential for cancer-agnostic therapies. Our results provide several strategies for improving next generation T-cell therapies via induction of new synthetic cell programs
EMBASE:638055202
ISSN: 1557-7422
CID: 5251822