Searched for: school:SOM
Department/Unit:Cell Biology
Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum
Sillitoe, Roy V; Joyner, Alexandra L
The most noticeable morphological feature of the cerebellum is its folded appearance, whereby fissures separate its anterior-posterior extent into lobules. Each lobule is molecularly coded along the medial-lateral axis by parasagittal stripes of gene expression in one cell type, the Purkinje cells (PCs). Additionally, within each lobule distinct combinations of afferents terminate and supply the cerebellum with synchronized sensory and motor information. Strikingly, afferent terminal fields are organized into parasagittal domains, and this pattern bears a close relationship to PC molecular coding. Thus, cerebellum three-dimensional complexity obeys a basic coordinate system that can be broken down into morphology and molecular coding. In this review, we summarize the sequential stages of cerebellum development that produce its laminar structure, foliation, and molecular organization. We also introduce genes that regulate morphology and molecular coding, and discuss the establishment of topographical circuits within the context of the two coordinate systems. Finally, we discuss how abnormal cerebellar organization may result in neurological disorders like autism
PMID: 17506688
ISSN: 1081-0706
CID: 96757
Fibroblast growth factor signaling controls development of the cerebellar vermis by inhibiting signals permissive for roofplate formation in anterior rhombomere 1 [Meeting Abstract]
Basson, MA; Echevarria, D; Peterson, C; Minowada, G; Sudarov, A; Joyner, A; Mason, J; Martinez, S
ISI:000247120500060
ISSN: 0012-1606
CID: 104590
Nuclear transfer methods to study aging
Liu, Lin; Keefe, David L
Maternal age affects oocyte quality and early embryo development. Aberrant meiosis of oocytes and compromised early embryo development from older females could originate from defects in the nucleus, the cytoplasm, or both. Nuclear transfer has been used for decades as a tool to study nuclear-cytoplasmic interactions in early embryos, and has uncovered genomic imprinting, nuclear reprogramming, and produced animal clones. Here, we describe the technique for investigating nuclear-cyoplasmic interactions in oocytes and zygotes in female reproductive aging. Nuclear transfer can be performed efficiently and effects of the technique itself on meiosis and early embryo development are minimal as long as care is taken to minimize insult to oocytes or embryos. This protocol first focuses on use of nuclear transfer to study nucleus versus cytoplasmic origin in agingassociated meiosis defects in oocytes at the germinal vesicle (GV) stage. Then, nuclear transfer is used at the zygote stage to study nuclear and cytoplasmic abnormality and apoptosis in early development
PMID: 17634583
ISSN: 1064-3745
CID: 101977
Na+,K+-ATPase and hormone ouabain:new roles for an old enzyme and an old inhibitor
Contreras, R G; Flores-Beni Tez, D; Flores-Maldonado, C; Larre, I; Shoshani, L; Cereijido, M
Na+,K+-ATPase and its specific inhibitor ouabain entered the 21st century with an entirely new set of properties, that are the focuses of the present review. (i) The adhesive property of the beta-subunit explains why is Na+,K+-ATPase expressed polarizedly on one side of epithelial cells, a crucial property to explain the exchange of substances between higher organisms and the environment; (ii) Ouabain was recently recognized to be a hormone. (iii) Na+,K+-ATPase is known to act as a receptor for hormone ouabain, (iv) binding of ouabain to the Na+,K+-ATPase modifies adhesion: at high concentrations the outcome is total detachment. (v) Ouabain-resistant cells and ouabain-sensitive ones establish a special type of cell-cell interaction, so that sensitive cells withstand the presence of otherwise lethal levels of ouabain. (vi) Hormone ouabain provokes relocalization of specific molecules from the submembrane scaffold to the nucleus, where these bind to promoters of genes involved in proliferation, differentiation, migration, etc. (vii) Finally, ouabain causes a retrieval of Na+,K+-ATPase from the plasma membrane. We speculate that this would reduce the driving force that operates co- and counter-transporters, which are responsible for the exchange of substances across epithelia.
PMID: 17535734
ISSN: 0145-5680
CID: 523262
Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages
Seimon, Tracie A; Obstfeld, Amrom; Moore, Kathryn J; Golenbock, Douglas T; Tabas, Ira
Macrophage pattern recognition receptors (PRRs) play key roles in innate immunity, but they also may contribute to disease processes under certain pathological conditions. We recently showed that engagement of the type A scavenger receptor (SRA), a PRR, triggers JNK-dependent apoptosis in endoplasmic reticulum (ER)-stressed macrophages. In advanced atherosclerotic lesions, the SRA, activated JNK, and ER stress are observed in macrophages, and macrophage death in advanced atheromata leads to plaque necrosis. Herein, we show that SRA ligands trigger apoptosis in ER-stressed macrophages by cooperating with another PRR, Toll-like receptor 4 (TLR4), to redirect TLR4 signaling from prosurvival to proapoptotic. Common SRA ligands activate both TLR4 signaling and engage the SRA. The TLR4 effect results in activation of the proapoptotic MyD88-JNK branch of TLR4, whereas the SRA effect silences the prosurvival IRF-3-IFN-beta branch of TLR4. The normal cell-survival effect of LPS-induced TLR4 activation is converted into an apoptosis response by immunoneutralization of IFN-beta, and the apoptosis effect of SRA ligands is converted into a cell-survival response by reconstitution with IFN-beta. Thus, combinatorial signaling between two distinct PRRs results in a functional outcome-macrophage apoptosis that does not occur with either PRR alone. PRR-induced macrophage death may play important roles in advanced atherosclerosis and in other innate immunity-related processes in which the balance between macrophage survival and death is critical
PMCID:1750881
PMID: 17167049
ISSN: 0027-8424
CID: 106622
The enzymatic function of tafazzin
Xu, Yang; Malhotra, Ashim; Ren, Mindong; Schlame, Michael
Tafazzin is a putative enzyme that is involved in cardiolipin metabolism, it may carry mutations responsible for Barth syndrome. To identify the biochemical reaction catalyzed by tafazzin, we expressed the full-length isoform of Drosophila melanogaster tafazzin in a baculovirus-Sf9 insect cell system. Tafazzin expression induced a new enzymatic function in Sf9 cell mitochondria, namely 1-palmitoyl-2-[14C]linoleoyl-phosphatidylcholine:monolysocardiolipin linoleoyltransferase. We also found evidence for the reverse reaction, because tafazzin expression caused transfer of acyl groups from phospholipids to 1-[14C]palmitoyl-2-lyso-phosphatidylcholine. An affinity-purified tafazzin construct, tagged with the maltose-binding protein, catalyzed both forward and reverse transacylations between cardiolipin and phosphatidylcholine, but was unable to utilize CoA or acyl-CoA as substrates. Whereas tafazzin supported transacylations between various phospholipid-lysophospholipid pairs, it showed the highest rate for the phosphatidylcholine-cardiolipin transacylation. Transacylation activities were about 10-fold higher for linoleoyl groups than for oleoyl groups, and they were negligible for arachidonoyl groups. The data show that Drosophila tafazzin is a CoA-independent, acyl-specific phospholipid transacylase with substrate preference for cardiolipin and phosphatidylcholine
PMID: 17082194
ISSN: 0021-9258
CID: 70309
Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies
Barbee, Scott A; Estes, Patricia S; Cziko, Anne-Marie; Hillebrand, Jens; Luedeman, Rene A; Coller, Jeff M; Johnson, Nick; Howlett, Iris C; Geng, Cuiyun; Ueda, Ryu; Brand, Andrea H; Newbury, Sarah F; Wilhelm, James E; Levine, Richard B; Nakamura, Akira; Parker, Roy; Ramaswami, Mani
Local control of mRNA translation modulates neuronal development, synaptic plasticity, and memory formation. A poorly understood aspect of this control is the role and composition of ribonucleoprotein (RNP) particles that mediate transport and translation of neuronal RNAs. Here, we show that staufen- and FMRP-containing RNPs in Drosophila neurons contain proteins also present in somatic "P bodies," including the RNA-degradative enzymes Dcp1p and Xrn1p/Pacman and crucial components of miRNA (argonaute), NMD (Upf1p), and general translational repression (Dhh1p/Me31B) pathways. Drosophila Me31B is shown to participate (1) with an FMRP-associated, P body protein (Scd6p/trailer hitch) in FMRP-driven, argonaute-dependent translational repression in developing eye imaginal discs; (2) in dendritic elaboration of larval sensory neurons; and (3) in bantam miRNA-mediated translational repression in wing imaginal discs. These results argue for a conserved mechanism of translational control critical to neuronal function and open up new experimental avenues for understanding the regulation of mRNA function within neurons.
PMCID:1955741
PMID: 17178403
ISSN: 0896-6273
CID: 5192912
Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish
Prober, David A; Rihel, Jason; Onah, Anthony A; Sung, Rou-Jia; Schier, Alexander F
As many as 10% of humans suffer chronic sleep disturbances, yet the genetic mechanisms that regulate sleep remain essentially unknown. It is therefore crucial to develop simple and cost-effective vertebrate models to study the genetic regulation of sleep. The best characterized mammalian sleep/wake regulator is hypocretin/orexin (Hcrt), whose loss results in the sleep disorder narcolepsy and that has also been implicated in feeding behavior, energy homeostasis, thermoregulation, reward seeking, addiction, and maternal behavior. Here we report that the expression pattern and axonal projections of embryonic and larval zebrafish Hcrt neurons are strikingly similar to those in mammals. We show that zebrafish larvae exhibit robust locomotive sleep/wake behaviors as early as the fifth day of development and that Hcrt overexpression promotes and consolidates wakefulness and inhibits rest. Similar to humans with insomnia, Hcrt-overexpressing larvae are hyperaroused and have dramatically reduced abilities to initiate and maintain rest at night. Remarkably, Hcrt function is modulated by but does not require normal circadian oscillations in locomotor activity. Our zebrafish model of Hcrt overexpression indicates that the ancestral function of Hcrt is to promote locomotion and inhibit rest and will facilitate the discovery of neural circuits, genes, and drugs that regulate Hcrt function and sleep.
PMID: 17182791
ISSN: 0270-6474
CID: 877062
Physiological mouse brain Abeta levels are not related to the phosphorylation state of threonine-668 of Alzheimer's APP
Sano, Yoshitake; Nakaya, Tadashi; Pedrini, Steve; Takeda, Shizu; Iijima-Ando, Kanae; Iijima, Koichi; Mathews, Paul M; Itohara, Shigeyoshi; Gandy, Sam; Suzuki, Toshiharu
BACKGROUND: Amyloid-beta peptide species ending at positions 40 and 42 (Abeta40, Abeta42) are generated by the proteolytic processing of the Alzheimer's amyloid precursor protein (APP). Abeta peptides accumulate in the brain early in the course of Alzheimer's disease (AD), especially Abeta42. The cytoplasmic domain of APP regulates intracellular trafficking and metabolism of APP and its carboxyl-terminal fragments (CTFalpha, CTFbeta). The role of protein phosphorylation in general, and that of the phosphorylation state of APP at threonine-668 (Thr668) in particular, has been investigated in detail by several laboratories (including our own). Some investigators have recently proposed that the phosphorylation state of Thr668 plays a pivotal role in governing brain Abeta levels, prompting the current study. METHODOLOGY: In order to evaluate whether the phosphorylation state of Thr668 controlled brain Abeta levels, we studied the levels and subcellular distributions of holoAPP, sAPPalpha, sAPPbeta, CTFalpha, CTFbeta, Abeta40 and Abeta42 in brains from 'knock-in' mice in which a non-phosphorylatable alanyl residue had been substituted at position 668, replacing the threonyl residue present in the wild-type protein. CONCLUSIONS: The levels and subcellular distributions of holoAPP, sAPPalpha, sAPPbeta, CTFalpha, CTFbeta, Abeta40 and Abeta42 in the brains of Thr668Ala mutant mice were identical to those observed in wild-type mice. These results indicate that, despite speculation to the contrary, the phosphorylation state of APP at Thr668 does not play an obvious role in governing the physiological levels of brain Abeta40 or Abeta42 in vivo
PMCID:1762327
PMID: 17183681
ISSN: 1932-6203
CID: 95393
Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification
Moretti, Alessandra; Caron, Leslie; Nakano, Atsushi; Lam, Jason T; Bernshausen, Alexandra; Chen, Yinhong; Qyang, Yibing; Bu, Lei; Sasaki, Mika; Martin-Puig, Silvia; Sun, Yunfu; Evans, Sylvia M; Laugwitz, Karl-Ludwig; Chien, Kenneth R
Cardiogenesis requires the generation of endothelial, cardiac, and smooth muscle cells, thought to arise from distinct embryonic precursors. We use genetic fate-mapping studies to document that isl1(+) precursors from the second heart field can generate each of these diverse cardiovascular cell types in vivo. Utilizing embryonic stem (ES) cells, we clonally amplified a cellular hierarchy of isl1(+) cardiovascular progenitors, which resemble the developmental precursors in the embryonic heart. The transcriptional signature of isl1(+)/Nkx2.5(+)/flk1(+) defines a multipotent cardiovascular progenitor, which can give rise to cells of all three lineages. These studies document a developmental paradigm for cardiogenesis, where muscle and endothelial lineage diversification arises from a single cell-level decision of a multipotent isl1(+) cardiovascular progenitor cell (MICP). The discovery of ES cell-derived MICPs suggests a strategy for cardiovascular tissue regeneration via their isolation, renewal, and directed differentiation into specific mature cardiac, pacemaker, smooth muscle, and endothelial cell types.
PMID: 17123592
ISSN: 0092-8674
CID: 586622