Searched for: school:SOM
Department/Unit:Cell Biology
Integrity of all four transmembrane domains of the tetraspanin uroplakin Ib is required for its exit from the ER
Tu, Liyu; Kong, Xiang-Peng; Sun, Tung-Tien; Kreibich, Gert
The surface of the mammalian urinary bladder is covered by a crystalline, asymmetric unit membrane (AUM) structure that contains the four major uroplakins (UPs): Ia, Ib, II and IIIa. UPIa and UPIb belong to the family of tetraspanins. Although UPIa and UPIb are structurally conserved, only UPIb could exit from the endoplasmic reticulum (ER) and reach the cell surface when expressed alone in 293T cells. Modifications of the large extracellular loop of UPIb, such as mutation of the N-glycosylation site or the cysteines involved in the formation of three disulfide bridges, or exchanging the large luminal loop of UPIb with that of UPIa did not affect the ability of UPIb to reach the cell surface. However, modifications of any of the four transmembrane domains of UPIb led to ER retention, suggesting that the proper formation of helical bundles consisting of the tetraspanin transmembrane domains is a prerequisite for UPIb to exit from the ER. Results of sedimentation analysis suggested that aggregate formation is a mechanism for ER retention
PMID: 17158912
ISSN: 0021-9533
CID: 71581
Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers
Yamamoto, Yohei; Fukushima, Takanori; Suna, Yuki; Ishii, Noriyuki; Saeki, Akinori; Seki, Shu; Tagawa, Seiichi; Taniguchi, Masateru; Kawai, Tomoji; Aida, Takuzo
Controlled self-assembly of a trinitrofluorenone-appended gemini-shaped amphiphilic hexabenzocoronene selectively formed nanotubes or microfibers with different photochemical properties. In these nanotubes, which are 16 nanometers in diameter and several micrometers long, a molecular layer of electron-accepting trinitrofluorenone laminates an electron-donating graphitic layer of pi-stacked hexabenzocoronene. The coaxial nanotubular structure allows photochemical generation of spatially separated charge carriers and a quick photoconductive response with a large on/off ratio greater than 10(4). In sharp contrast, the microfibers consist of a charge-transfer complex between the hexabenzocoronene and trinitrofluorenone parts and exhibit almost no photocurrent generation.
PMID: 17170300
ISSN: 1095-9203
CID: 2982592
ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease
Ryu, Hoon; Lee, Junghee; Hagerty, Sean W; Soh, Byoung Yul; McAlpin, Sara E; Cormier, Kerry A; Smith, Karen M; Ferrante, Robert J
Chromatin remodeling and transcription regulation are tightly controlled under physiological conditions. It has been suggested that altered chromatin modulation and transcription dysfunction may play a role in the pathogenesis of Huntington's disease (HD). Increased histone methylation, a well established mechanism of gene silencing, results in transcriptional repression. ERG-associated protein with SET domain (ESET), a histone H3 (K9) methyltransferase, mediates histone methylation. We show that ESET expression is markedly increased in HD patients and in transgenic R6/2 HD mice. Similarly, the protein level of trimethylated histone H3 (K9) was also elevated in HD patients and in R6/2 mice. We further demonstrate that both specificity protein 1 (Sp1) and specificity protein 3 (Sp3) act as transcriptional activators of the ESET promoter in neurons and that mithramycin, a clinically approved guanosine-cytosine-rich DNA binding antitumor antibiotic, interferes with the DNA binding of these Sp family transcription factors, suppressing basal ESET promoter activity in a dose dependent manner. The combined pharmacological treatment with mithramycin and cystamine down-regulates ESET gene expression and reduces hypertrimethylation of histone H3 (K9). This polytherapy significantly ameliorated the behavioral and neuropathological phenotype in the R6/2 mice and extended survival over 40%, well beyond any existing reported treatment in HD mice. Our data suggest that modulation of gene silencing mechanisms, through regulation of the ESET gene is important to neuronal survival and, as such, may be a promising treatment in HD patients.
PMCID:1748195
PMID: 17142323
ISSN: 0027-8424
CID: 979622
Multi-objective evolutionary optimization of agent-based models: An application to emergency response planning
Chapter by: Narzisi, Giuseppe; Mysore, Venkatesh; Mishra, Bud
in: Proceedings of the 2nd IASTED International Conference on Computational Intelligence, CI 2006 by
[S.l.] : Springer Verlagservice@springer.de, 2006
pp. 224-230
ISBN: 9780889866027
CID: 2852222
Simpathica: A computational systems biology tool within the valis bioinformatics environment
Chapter by: Mishra, Bud; Antoniotti, Marco; Paxia, Salvatore; Ugel, Nadia
in: Computational Systems Biology by
[S.l.] : Elsevier Inc., 2006
pp. 79-102
ISBN: 9780120887866
CID: 2852232
Crystal structure of the agrin-responsive immunoglobulin-like domains 1 and 2 of the receptor tyrosine kinase MuSK
Stiegler, Amy L; Burden, Steven J; Hubbard, Stevan R
Muscle-specific kinase (MuSK) is a receptor tyrosine kinase expressed exclusively in skeletal muscle, where it is required for formation of the neuromuscular junction. MuSK is activated by agrin, a neuron-derived heparan sulfate proteoglycan. Here, we report the crystal structure of the agrin-responsive first and second immunoglobulin-like domains (Ig1 and Ig2) of the MuSK ectodomain at 2.2 A resolution. The structure reveals that MuSK Ig1 and Ig2 are Ig-like domains of the I-set subfamily, which are configured in a linear, semi-rigid arrangement. In addition to the canonical internal disulfide bridge, Ig1 contains a second, solvent-exposed disulfide bridge, which our biochemical data indicate is critical for proper folding of Ig1 and processing of MuSK. Two Ig1-2 molecules form a non-crystallographic dimer that is mediated by a unique hydrophobic patch on the surface of Ig1. Biochemical analyses of MuSK mutants introduced into MuSK(-/-) myotubes demonstrate that residues in this hydrophobic patch are critical for agrin-induced MuSK activation
PMCID:1752213
PMID: 17011580
ISSN: 0022-2836
CID: 70021
Effect of charge substitutions at residue his-142 on voltage gating of connexin43 channels
Shibayama, Junko; Gutierrez, Cristina; Gonzalez, Daniel; Kieken, Fabien; Seki, Akiko; Carrion, Jesus Requena; Sorgen, Paul L; Taffet, Steven M; Barrio, Luis C; Delmar, Mario
Previous studies indicate that the carboxyl terminal of connexin43 (Cx43CT) is involved in fast transjunctional voltage gating. Separate studies support the notion of an intramolecular association between Cx43CT and a region of the cytoplasmic loop (amino acids 119-144; referred to as 'L2'). Structural analysis of L2 shows two alpha-helical domains, each with a histidine residue in its sequence (H126 and H142). Here, we determined the effect of H142 replacement by lysine, alanine, and glutamate on the voltage gating of Cx43 channels. Mutation H142E led to a significant reduction in the frequency of occurrence of the residual state and a prolongation of dwell open time. Macroscopically, there was a large reduction in the fast component of voltage gating. These results resembled those observed for a mutant lacking the carboxyl terminal (CT) domain. NMR experiments showed that mutation H142E significantly decreased the Cx43CT-L2 interaction and disrupted the secondary structure of L2. Overall, our data support the hypothesis that fast voltage gating involves an intramolecular particle-receptor interaction between CT and L2. Some of the structural constrains of fast voltage gating may be shared with those involved in the chemical gating of Cx43
PMCID:1635665
PMID: 16963503
ISSN: 0006-3495
CID: 113855
Expression, purification, and reconstitution of the human Na+/H+ exchanger isoform 1 NHE1 in Saccharomyces cerevisiae [Meeting Abstract]
Moncoq, Karine; Kemp, Grant; Fliegel, Larry; Young, Howard S
ISI:000244069500046
ISSN: 0829-8211
CID: 2444802
Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species
Jobling, Michael F; Mott, Joni D; Finnegan, Monica T; Jurukovski, Vladimir; Erickson, Anna C; Walian, Peter J; Taylor, Scott E; Ledbetter, Steven; Lawrence, Catherine M; Rifkin, Daniel B; Barcellos-Hoff, Mary Helen
The three mammalian transforming growth factor beta (TGF-beta) isoforms are each secreted in a latent complex in which TGF-beta homodimers are non-covalently associated with homodimers of their respective pro-peptide called the latency-associated peptide (LAP). Release of TGF-beta from its LAP, called activation, is required for binding of TGF-beta to cellular receptors, making extracellular activation a critical regulatory point for TGF-beta bioavailability. Our previous work demonstrated that latent TGF-beta1 (LTGF-beta1) is efficiently activated by ionizing radiation in vivo and by reactive oxygen species (ROS) generated by Fenton chemistry in vitro. In the current study, we determined the specific ROS and protein target that render LTGF-beta1 redox sensitive. First, we compared LTGF-beta1, LTGF-beta2 and LTGF-beta3 to determine the generality of this mechanism of activation and found that redox-mediated activation is restricted to the LTGF-beta1 isoform. Next, we used scavengers to determine that ROS activation was a function of OH(.) availability, confirming oxidation as the primary mechanism. To identify which partner of the LTGF-beta1 complex was functionally modified, each was exposed to ROS and tested for the ability to form a latent complex. Exposure of TGF-beta1 did not alter its ability to associate with LAP, but exposing LAP-beta1 to ROS prohibited this phenomenon, while treatment of ROS-exposed LAP-beta1 with a mild reducing agent restored its ability to neutralize TGF-beta1 activity. Taken together, these results suggest that ROS-induced oxidation in LAP-beta1 triggers a conformational change that releases TGF-beta1. Using site-specific mutation, we identified a methionine residue at amino acid position 253 unique to LAP-beta1 as critical to ROS-mediated activation. We propose that LTGF-beta1 contains a redox switch centered at methionine 253, which allows LTGF-beta1 to act uniquely as an extracellular sensor of oxidative stress in tissues
PMID: 17149983
ISSN: 0033-7587
CID: 83229
Endosome dysfunction in Alzheimer's disease: Genetic links and implications for synapse failure and neurodegeneration [Meeting Abstract]
Nixon, RA; Cataldo, A; Mathews, P; Jiang, Y; Ginsberg, SD; Peterhoff, C
ISI:000242215900084
ISSN: 0893-133x
CID: 70911