Searched for: school:SOM
Department/Unit:Cell Biology
The parallelization of SPIDER on distributed-memory computers using MPI
Yang, Chao; Penczek, Pawel A; Leith, ArDean; Asturias, Francisco J; Ng, Esmond G; Glaeser, Robert M; Frank, Joachim
We describe the strategies and implementation details we employed to parallelize the SPIDER software package on distributed-memory parallel computers using the message passing interface (MPI). The MPI-enabled SPIDER preserves the interactive command line and batch interface used in the sequential version of SPIDER, thus does not require users to modify their existing batch programs. We show the excellent performance of the MPI-enabled SPIDER when it is used to perform multi-reference alignment and 3-D reconstruction operations on a number of different computing platforms. We point out some performance issues when the MPI-enabled SPIDER is used for a complete 3-D projection matching refinement run, and propose several ways to further improve the parallel performance of SPIDER on distributed-memory machines
PMID: 16859923
ISSN: 1047-8477
CID: 66293
Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization
Scheres, Sjors H W; Gao, Haixiao; Valle, Mikel; Herman, Gabor T; Eggermont, Paul P B; Frank, Joachim; Carazo, Jose-Maria
Although three-dimensional electron microscopy (3D-EM) permits structural characterization of macromolecular assemblies in distinct functional states, the inability to classify projections from structurally heterogeneous samples has severely limited its application. We present a maximum likelihood-based classification method that does not depend on prior knowledge about the structural variability, and demonstrate its effectiveness for two macromolecular assemblies with different types of conformational variability: the Escherichia coli ribosome and Simian virus 40 (SV40) large T-antigen.
PMID: 17179934
ISSN: 1548-7091
CID: 4293242
Radiation damage to protein specimens from electron beam imaging and diffraction: a mini-review of anti-damage approaches, with special reference to synchrotron X-ray crystallography
Massover, William H
Recent research progress using X-ray cryo-crystallography with the photon beams from third-generation synchrotron sources has resulted in recognition that this intense radiation commonly damages protein samples even when they are held at 100 K. Other structural biologists examining thin protein crystals or single particle specimens encounter similar radiation damage problems during electron diffraction and imaging, but have developed some effective countermeasures. The aim of this concise review is to examine whether analogous approaches can be utilized to alleviate the X-ray radiation damage problem in synchrotron macromolecular crystallography. The critical discussion of this question is preceded by presentation of background material on modern technical procedures with electron beam instruments using 300-400 kV accelerating voltage, low-dose exposures for data recording, and protection of protein specimens by cryogenic cooling; these practical approaches to dealing with electron radiation damage currently permit best resolution levels of 6 A (0.6 nm) for single particle specimens, and of 1.9 A for two-dimensional membrane protein crystals. Final determination of the potential effectiveness and practical value of using such new or unconventional ideas will necessitate showing, by experimental testing, that these produce significantly improved protection of three-dimensional protein crystals during synchrotron X-ray diffraction.
PMID: 17211078
ISSN: 0909-0495
CID: 610552
Reconstitution and crystallization of CopA from archaeoglolms fulgidis [Meeting Abstract]
Wu, CC; Stokes, DL
ISI:000243972400031
ISSN: 0006-3495
CID: 71386
Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia
Capla, Jennifer M; Grogan, Raymon H; Callaghan, Matthew J; Galiano, Robert D; Tepper, Oren M; Ceradini, Daniel J; Gurtner, Geoffrey C
BACKGROUND: Diabetics suffer from vascular dysfunction with increased risks of coronary artery disease and peripheral vascular disease secondary to an impaired ability to respond to tissue ischemia. Because endothelial progenitor cells are known to home to sites of ischemia and participate in new blood vessel growth, the authors examined the effects of diabetes on human endothelial progenitor cell function and peripheral tissue signaling in hypoxia, and determined whether these cells might be a useful cell-based therapy for diabetic vascular complications. METHODS: Circulating human endothelial progenitor cells from type 2 diabetic patients and controls were isolated and subjected to in vitro adhesion, migration, and proliferation assays (n = 5). Cell mobilization and recruitment were studied in vivo in diabetic and nondiabetic environments (n = 6). Exogenous human diabetic and normal cells were analyzed for therapeutic efficacy in a murine ischemia model (n = 6). RESULTS: Adhesion, migration, and proliferation of human diabetic endothelial progenitor cells in response to hypoxia was significantly reduced compared with controls. In diabetic mice, cell mobilization from the bone marrow and recruitment into ischemic tissue was significantly reduced compared with controls. Normal cells injected systemically as replacement therapy in a diabetic mouse increased but did not normalize ischemic tissue survival. CONCLUSIONS: These findings suggest that diabetes causes defects in both the endothelial progenitor cell and peripheral tissue responses to hypoxia. These changes in endothelial progenitor cell function and signaling offer a novel explanation for the poor clinical outcome of type 2 diabetics following ischemic events. Based on these findings, it is unlikely that endothelial progenitor cell-based cellular therapies will be able to prevent diabetic complications
PMID: 17255657
ISSN: 1529-4242
CID: 70864
Telomeres and meiosis in health and disease
Keefe, D L
PMID: 17219026
ISSN: 1420-682x
CID: 101979
Telomeres and aging-related meiotic dysfunction in women
Keefe, D L; Liu, L; Marquard, K
Meiotic dysfunction increasingly afflicts women as they age, resulting in infertility, miscarriage and handicapped offspring. How aging disrupts meiotic function in women remains unclear, but as women increasingly delay childbearing, this issue becomes urgent. Telomeres, which mediate aging in mitotic cells, may also mediate aging during meiosis. Telomeres shorten during DNA replication. In mammals, oocytes remain quiescent, but their precursors replicated during fetal oogenesis. Moreover, eggs ovulated from older women entered meiosis later during fetal oogenesis than eggs ovulated when younger, and therefore underwent more replications. Telomeres also shorten from reactive oxygen, which triggers a DNA repair response, so the prolonged interval between fetal oogenesis and ovulation in some women would further shorten telomeres. Mice normally do not exhibit age-related meiotic dysfunction (interestingly, their telomeres are manyfold longer than telomeres in women), but genetic or pharmacologic shortening of mouse telomeres recapitulates the reproductive aging phenotype of women. This has led to a telomere theory of age-related meiotic dysfunction in women, and underlined the importance to human health of a mechanistic understanding of telomeres and meiosis
PMID: 17219022
ISSN: 1420-682x
CID: 101980
Application of the iterative helical real-space reconstruction method to large membranous tubular crystals of P-type ATPases
Pomfret, Andrew J; Rice, William J; Stokes, David L
Since the development of three-dimensional helical reconstruction methods in the 1960's, advances in Fourier-Bessel methods have facilitated structure determination to near-atomic resolution. A recently developed iterative helical real-space reconstruction (IHRSR) method provides an alternative that uses single-particle analysis in conjunction with the imposition of helical symmetry. In this work, we have adapted the IHRSR algorithm to work with frozen-hydrated tubular crystals of P-type ATPases. In particular, we have implemented layer-line filtering to improve the signal-to-noise ratio, Wiener-filtering to compensate for the contrast transfer function, solvent flattening to improve reference reconstructions, out-of-plane tilt compensation to deal with flexibility in three dimensions, systematic calculation of Fourier shell correlations to track the progress of the refinement, and tools to control parameters as the refinement progresses. We have tested this procedure on datasets from Na(+)/K(+)-ATPase, rabbit skeletal Ca(2+)-ATPase and scallop Ca(2+)-ATPase in order to evaluate the potential for sub-nanometer resolution as well as the robustness in the presence of disorder. We found that Fourier-Bessel methods perform better for well-ordered samples of skeletal Ca(2+)-ATPase and Na(+)/K(+)-ATPase, although improvements to IHRSR are discussed that should reduce this disparity. On the other hand, IHRSR was very effective for scallop Ca(2+)-ATPase, which was too disordered to analyze by Fourier-Bessel methods
PMCID:4040983
PMID: 16879984
ISSN: 1047-8477
CID: 71141
Successive abstractions of hybrid automata for monotonic CTL model checking
Gentilini, R; Schneider, K; Mishra, B
Current symbolic techniques for the automated reasoning over undecidable hybrid automata, force one to choose between the refinement of either an overapproximation or an underapproximation of the set of reachable states. When the analysis of branching time temporal properties is considered, the literature has developed a number of abstractions techniques based on the simulation preorder, that allow the preservation of only true universally quantified formulæ. This paper suggests a way to surmount these difficulties by defining a succession of abstractions of hybrid automata, which not only (1) allow the detection and the refinement of both over- and under-approximated reachable sets symmetrically, but also (2) preserves the full set of branching time temporal properties (when interpreted on a dense time domain). Moreover, our approach imposes on the corresponding set of abstractions a desirable monotonicity property with respect to the set of model-checked formulaæ.
SCOPUS:35448997281
ISSN: 0302-9743
CID: 643192
Physiological and pathological mineralization: A complex multifactorial process
Kirsch T.
EMBASE:2007404017
ISSN: 1041-9918
CID: 83069