Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13368


Theory-based signal calibration with single-point T1 measurements for first-pass quantitative perfusion MRI studies

Cernicanu, Alexandru; Axel, Leon
RATIONALE AND OBJECTIVES: The aim of the study is to develop a theory-based signal calibration approach to be used for the conversion of signal-time curves to absolute contrast concentration-time curves for first-pass contrast-enhanced quantitative myocardial perfusion studies. MATERIALS AND METHODS: A normalization procedure was used to obtain a theoretical relationship between image signal and T1 and perform rapid single-point T1 measurements. T1 measurements were compared with reference T1 measurements. The method also was used in preliminary in vivo contrast-enhanced first-pass perfusion studies, and its applicability for dual-delay-time acquisitions was shown. A theory-based error sensitivity analysis was used to characterize the robustness of the method. RESULTS: The normalization procedure was implemented with minimal noise enhancement and insensitivity to small misregistrations through postprocessing techniques. The rapid T1 measurements are in excellent agreement with the reference measurements (R = 0.99, slope = 1.05, bias = -5.96 milliseconds). For in vivo studies, it is possible to simultaneously calibrate the arterial input function and myocardial enhancement curves acquired with different effective trigger delays through appropriate use of the theory-based signal calibration model. With this method, errors of in vivo baseline T1 estimates are large, but the effect of these large errors on the accuracy of contrast agent concentration estimates is limited. CONCLUSION: This theory-based signal calibration approach can be used to perform rapid T1 mapping and provides flexibility for in vivo calibration of signal-time curves resulting from dual-delay-time first-pass contrast-enhanced acquisitions
PMID: 16679270
ISSN: 1076-6332
CID: 93980

Dose ranging and efficacy study of high-dose coenzyme Q10 formulations in Huntington's disease mice

Smith, Karen M; Matson, Samantha; Matson, Wayne R; Cormier, Kerry; Del Signore, Steven J; Hagerty, Sean W; Stack, Edward C; Ryu, Hoon; Ferrante, Robert J
There is substantial evidence that a bioenergetic defect may play a role in the pathogenesis of Huntington's Disease (HD). A potential therapy for remediating defective energy metabolism is the mitochondrial cofactor, coenzyme Q10 (CoQ10). We have reported that CoQ10 is neuroprotective in the R6/2 transgenic mouse model of HD. Based upon the encouraging results of the CARE-HD trial and recent evidence that high-dose CoQ10 slows the progressive functional decline in Parkinson's disease, we performed a dose ranging study administering high levels of CoQ10 from two commercial sources in R6/2 mice to determine enhanced efficacy. High dose CoQ10 significantly extended survival in R6/2 mice, the degree of which was dose- and source-dependent. CoQ10 resulted in a marked improvement in motor performance and grip strength, with a reduction in weight loss, brain atrophy, and huntingtin inclusions in treated R6/2 mice. Brain levels of CoQ10 and CoQ9 were significantly lower in R6/2 mice, in comparison to wild type littermate control mice. Oral administration of CoQ10 elevated CoQ10 plasma levels and significantly increased brain levels of CoQ9, CoQ10, and ATP in R6/2 mice, while reducing 8-hydroxy-2-deoxyguanosine concentrations, a marker of oxidative damage. We demonstrate that high-dose administration of CoQ10 exerts a greater therapeutic benefit in a dose dependent manner in R6/2 mice than previously reported and suggest that clinical trials using high dose CoQ10 in HD patients are warranted.
PMID: 16647250
ISSN: 0006-3002
CID: 979612

Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion

Harata, Nobutoshi C; Aravanis, Alexander M; Tsien, Richard W
Neurotransmitters and hormones are released from neurosecretory cells by exocytosis (fusion) of synaptic vesicles, large dense-core vesicles and other types of vesicles or granules. The exocytosis is terminated and followed by endocytosis (retrieval). More than fifty years of research have established full-collapse fusion and clathrin-mediated endocytosis as essential modes of exo-endocytosis. Kiss-and-run and vesicle reuse represent alternative modes, but their prevalence and importance have yet to be elucidated, especially in neurons of the mammalian CNS. Here we examine various modes of exo-endocytosis across a wide range of neurosecretory systems. Full-collapse fusion and kiss-and-run coexist in many systems and play active roles in exocytotic events. In small nerve terminals of CNS, kiss-and-run has an additional role of enabling nerve terminals to conserve scarce vesicular resources and respond to high-frequency inputs. Full-collapse fusion and kiss-and-run will each contribute to maintaining cellular communication over a wide range of frequencies
PMID: 16805768
ISSN: 0022-3042
CID: 136739

History of Alzheimer's research: the politics of science in building a national program of research

Khachaturian, Zaven
PMID: 16917192
ISSN: 0893-0341
CID: 142898

Activation of FGFR1beta signaling pathway promotes survival, migration and resistance to chemotherapy in acute myeloid leukemia cells

Karajannis, M A; Vincent, L; Direnzo, R; Shmelkov, S V; Zhang, F; Feldman, E J; Bohlen, P; Zhu, Z; Sun, H; Kussie, P; Rafii, S
Fibroblast growth factors (FGFs) are important regulators of hematopoiesis and have been implicated in the tumorigenesis of solid tumors. Recent evidence suggests that FGF signaling through FGF receptors (FGFRs) may play a role in the proliferation of subsets of acute myeloid leukemias (AMLs). However, the precise mechanism and specific FGF receptors that support leukemic cell growth are not known. We show that FGF-2, through activation of FGFR1beta signaling, promotes survival, proliferation and migration of AML cells. Stimulation of FGFR1beta results in phosphoinositide 3-kinase (PI3-K)/Akt activation and inhibits chemotherapy-induced apoptosis of leukemic cells. Neutralizing FGFR1-specific antibody abrogates the physiologic and chemoprotective effects of FGF-2/FGFR1beta signaling and inhibits tumor growth in mice xenotransplanted with human AML. These data suggest that activation of FGF-2/FGFR1beta supports progression and chemoresistance in subsets of AML. Therefore, FGFR1 targeting may be of therapeutic benefit in subsets of AML
PMID: 16598308
ISSN: 0887-6924
CID: 73195

Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord

Hesseltine, S M; Law, M; Babb, J; Rad, M; Lopez, S; Ge, Y; Johnson, G; Grossman, R I
BACKGROUND AND PURPOSE: Evaluation of the spinal cord is important in the diagnosis and follow-up of patients with multiple sclerosis. Our purpose was to investigate diffusion tensor imaging (DTI) changes in different regions of normal-appearing spinal cord (NASC) in relapsing-remitting multiple sclerosis (RRMS). METHODS: Axial DTI of the cervical spinal cord was performed in 24 patients with RRMS and 24 age- and sex-matched control subjects. Fractional anisotropy (FA) and mean diffusivity (MD) were calculated in separate regions of interest (ROIs) in the anterior, lateral, and posterior spinal cord, bilaterally, and the central spinal cord, at the C2-C3 level. Patients and control subjects were compared with respect to FA and MD with the use of an exact Mann-Whitney test. Logistic regression and receiver operating characteristic (ROC) curve analysis assessed the utility of each measure for the diagnosis of RRMS. RESULTS: DTI metrics in areas of NASC in MS were significantly different in patients compared with control subjects; FA was lower in the lateral (mean +/- SD of 0.56 +/- 0.10 versus 0.69 +/- 0.09 in control subjects, P < .0001), posterior (0.52 +/- 0.11 versus 0.63 +/- 0.10, P < .0001), and central (0.53 +/- 0.10 versus 0.58 +/- 0.10, P = .049) NASC ROIs. Assessing DTI metrics in the diagnosis of MS, a sensitivity of 87.0% (95% confidence interval [CI], 66.4 to 97.1) and a specificity of 91.7% (95% CI, 73.0 to 98.7) were demonstrated. CONCLUSION: The NASC in RRMS demonstrates DTI changes. This may prove useful in detecting occult spinal cord pathology, predicting clinical course, and monitoring disease progression and therapeutic effect in MS
PMID: 16775261
ISSN: 0195-6108
CID: 67533

Regulation and function of tailless in the long germ wasp Nasonia vitripennis

Lynch, Jeremy A; Olesnicky, Eugenia C; Desplan, Claude
In the long germ insect Drosophila, the gene tailless acts to pattern the terminal regions of the embryo. Loss of function of this gene results in the deletion of the anterior and posterior terminal structures and the eighth abdominal segment. Drosophila tailless is activated by the maternal terminal system through Torso signaling at both poles of the embryo, with additional activation by Bicoid at the anterior. Here, we describe the expression and function of tailless in a long germ Hymenoptera, the wasp Nasonia vitripennis. Despite the morphological similarities in the mode of development of these two insects, we find major differences in the regulation and function of tailless between Nasonia and Drosophila. In contrast to the fly, Nasonia tll appears to rely on otd for its activation at both poles. In addition, the anterior domain of Nasonia tll appears to have little or no segmental patterning function, while the posterior tll domain has a much more extensive patterning role than its Drosophila counterpart.
PMID: 16670873
ISSN: 0949-944x
CID: 1694772

Speed-accuracy tradeoff in olfaction [Meeting Abstract]

Rinberg, D.; Koulakov, A.; Gelperin, A.
ISI:000238761600429
ISSN: 0379-864x
CID: 800692

Magnetic field correlation imaging

Jensen, Jens H; Chandra, Ramesh; Ramani, Anita; Lu, Hanzhang; Johnson, Glyn; Lee, Sang-Pil; Kaczynski, Kyle; Helpern, Joseph A
A magnetic resonance imaging (MRI) method is presented for estimating the magnetic field correlation (MFC) associated with magnetic field inhomogeneities (MFIs) within biological tissues. The method utilizes asymmetric spin echoes and is based on a detailed theory for the effect of MFIs on nuclear magnetic resonance (NMR) signal decay. The validity of the method is supported with results from phantom experiments at 1.5 and 3 T, and human brain images obtained at 3 T are shown to demonstrate the method's feasibility. The preliminary results suggest that MFC imaging may be useful for the quantitative assessment of iron within the brain
PMID: 16700026
ISSN: 0740-3194
CID: 67099

Estimation of synaptic conductances

Guillamon, Antoni; McLaughlin, David W; Rinzel, John
In order to identify and understand mechanistically the cortical circuitry of sensory information processing estimates are needed of synaptic input fields that drive neurons. From intracellular in vivo recordings one would like to estimate net synaptic conductance time courses for excitation and inhibition, g(E)(t) and g(I)(t), during time-varying stimulus presentations. However, the intrinsic conductance transients associated with neuronal spiking can confound such estimates, and thereby jeopardize functional interpretations. Here, using a conductance-based pyramidal neuron model we illustrate errors in estimates when the influence of spike-generating conductances are not reduced or avoided. A typical estimation procedure involves approximating the current-voltage relation at each time point during repeated stimuli. The repeated presentations are done in a few sets, each with a different steady bias current. From the trial-averaged smoothed membrane potential one estimates total membrane conductance and then dissects out estimates for g(E)(t) and g(I)(t). Simulations show that estimates obtained during phases without spikes are good but those obtained from phases with spiking should be viewed with skeptism. For the simulations, we consider two different synaptic input scenarios, each corresponding to computational network models of orientation tuning in visual cortex. One input scenario mimics a push-pull arrangement for g(E)(t) and g(I)(t) and idealized as specified smooth time courses. The other is taken directly from a large-scale network simulation of stochastically spiking neurons in a slab of cortex with recurrent excitation and inhibition. For both, we show that spike-generating conductances cause serious errors in the estimates of g(E) and g(I). In some phases for the push-pull examples even the polarity of g(I) is mis-estimated, indicating significant increase when g(I) is actually decreased. Our primary message is to be cautious about forming interpretations based on estimates developed during spiking phases
PMCID:2042540
PMID: 17084599
ISSN: 0928-4257
CID: 95412