Searched for: school:SOM
Department/Unit:Neuroscience Institute
Morphology and physiology of the cerebellar vestibulolateral lobe pathways linked to oculomotor function in the goldfish
Straka, Hans; Beck, James C; Pastor, Angel M; Baker, Robert
Intracellular recording and single-cell labeling were combined to investigate the oculomotor circuitry of the goldfish cerebellar vestibulolateral lobe, consisting of the eminentia granularis (Egr) and caudal lobe. Purkinje cells exhibiting highly conserved vertebrate electrophysiological and morphological properties provide the direct output from the caudal lobe to the vestibular nuclei. Biocytin labeling of the Egr distinguished numerous hindbrain precerebellar sources that could be divided into either putative mechano- or vestibulosensitive nuclei based on cellular location and axon trajectories. Precerebellar neurons in a hindbrain nucleus, called Area II, were electrophysiologically characterized after antidromic activation from the Egr (>50% bilateral) and their morphology analyzed after intracellular biocytin labeling (n = 28). Bipolar spindle-shaped somas ranged widely in size with comparably scaled dendritic arbors exhibiting largely closed field configuration. Area II neurons (85%) projected to the ipsilateral Egr with most (93%) sending a collateral through the cerebellar commissure to the contralateral Egr; however, 15% projected to the contralateral Egr by crossing in the ventral hindbrain. Axon terminals in the vestibular nucleus were the only collaterals within the hindbrain. Every Area II neuron received a disynaptic EPSP after contralateral horizontal canal nerve stimulation and a disynaptic IPSP, preceded by a small EPSP (>50%), after ipsilateral activation. Vestibular synaptic potentials were of varying shape/amplitude, unrelated to neuron location in the nucleus, and thus likely a correlate of somadendritic size. The exceptional separation of eye position and eye velocity signals into two separate hindbrain nuclei represents an ideal model for understanding the precerebellar projection to the vestibulocerebellum
PMID: 16775208
ISSN: 0022-3077
CID: 142120
Adaptive wavefront control with asynchronous stochastic parallel gradient descent clusters
Vorontsov, Mikhail A; Carhart, Gary W
A scalable adaptive optics (AO) control system architecture composed of asynchronous control clusters based on the stochastic parallel gradient descent (SPGD) optimization technique is discussed. It is shown that subdivision of the control channels into asynchronous SPGD clusters improves the AO system performance by better utilizing individual and/or group characteristics of adaptive system components. Results of numerical simulations are presented for two different adaptive receiver systems based on asynchronous SPGD clusters-one with a single deformable mirror with Zernike response functions and a second with tip-tilt and segmented wavefront correctors. We also discuss adaptive wavefront control based on asynchronous parallel optimization of several local performance metrics-a control architecture referred to as distributed adaptive optics (DAO). Analysis of the DAO system architecture demonstrated the potential for significant increase of the adaptation process convergence rate that occurs due to partial decoupling of the system control clusters optimizing individual performance metrics
PMID: 16985545
ISSN: 1084-7529
CID: 94052
Quantitative MR imaging in Alzheimer disease
Ramani, Anita; Jensen, Jens H; Helpern, Joseph A
Alzheimer disease (AD) is the most common type of dementia. It currently affects approximately 4 million people in the United States. AD is a progressive neurodegenerative disorder characterized by the gradual deposition of neuritic plaques and neurofibrillary tangles in the brain, which is thought to occur decades before the onset of clinical symptoms. Identification of people at risk before the clinical appearance of dementia has become a priority due to the potential benefits of therapeutic intervention. Although atrophy of medial temporal lobe structures has been shown to correlate with progression of AD, a growing number of recent reports have indicated that such atrophy may not be specific to AD. To improve diagnostic specificity, new quantitative magnetic resonance (MR) imaging methods are being developed that exploit known pathogenic mechanisms exclusive to AD. This article reviews the MR techniques that are currently available for the diagnostic assessment of AD
PMID: 16990669
ISSN: 0033-8419
CID: 68939
Subcellular localization of phosphatidylinositol synthesis
Monaco, Marie E; Cassai, Nicholas D; Sidhu, Gurdip S
It is well-established that the endoplasmic reticulum is the major site of phosphatidylinositol (PtdIns) synthesis. The PtdIns synthetic ability of other organelles, such as plasma membrane and nucleus, remains controversial. In the present study, we re-examine this question by comparing PtdIns synthesis in isolated cytoplasts (enucleated cells) with that in corresponding karyoplasts (nuclei surrounded by plasma membrane but lacking most cytoplasmic components). We report that cytoplasts are competent to carry out both basal and stimulated PtdIns synthesis as well as polyphosphoinositide hydrolysis, while karyoplasts can neither synthesize PtdIns nor hydrolyze phosphoinositides in response to agonists. The karyoplasts are, however, capable of synthesizing phosphatidylcholine (PtdCho), as previously reported. From these data, we conclude that PtdIns synthesis is limited to cytoplasmic components, and cannot be sustained by either plasma membrane or nucleus under conditions that permit robust PtdCho synthesis
PMID: 16904631
ISSN: 0006-291x
CID: 95443
Temporal processing and adaptation in the songbird auditory forebrain
Nagel, Katherine I; Doupe, Allison J
Songbird auditory neurons must encode the dynamics of natural sounds at many volumes. We investigated how neural coding depends on the distribution of stimulus intensities. Using reverse-correlation, we modeled responses to amplitude-modulated sounds as the output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities depend on the stimulus mean and variance. Filter shape depended strongly on mean amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast) of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells. Both filter and gain changes occurred rapidly after a change in statistics, suggesting that they represent nonlinearities in processing. These changes may permit neurons to signal effectively over a wider dynamic range and are reminiscent of findings in other sensory systems.
PMID: 16982428
ISSN: 0896-6273
CID: 1072492
Selective engagement of plasticity mechanisms for motor memory storage
Boyden, Edward S; Katoh, Akira; Pyle, Jason L; Chatila, Talal A; Tsien, Richard W; Raymond, Jennifer L
The number and diversity of plasticity mechanisms in the brain raises a central question: does a neural circuit store all memories by stereotyped application of the available plasticity mechanisms, or can subsets of these mechanisms be selectively engaged for specific memories? The uniform architecture of the cerebellum has inspired the idea that plasticity mechanisms like cerebellar long-term depression (LTD) contribute universally to memory storage. To test this idea, we investigated a set of closely related, cerebellum-dependent motor memories. In mutant mice lacking Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV), the maintenance of cerebellar LTD is abolished. Although memory for an increase in the gain of the vestibulo-ocular reflex (VOR) induced with high-frequency stimuli was impaired in these mice, memories for decreases in VOR gain and increases in gain induced with low-frequency stimuli were intact. Thus, a particular plasticity mechanism need not support all cerebellum-dependent memories, but can be engaged selectively according to the parameters of training
PMID: 16982426
ISSN: 0896-6273
CID: 136737
Early presynaptic changes during plasticity in cultured hippocampal neurons
Ninan, Ipe; Liu, Shumin; Rabinowitz, Daniel; Arancio, Ottavio
Long-lasting increase in synaptic strength is thought to underlie learning. An explosion of data has characterized changes in postsynaptic (pstS) AMPA receptor cycling during potentiation. However, changes occurring within the presynaptic (prS) terminal remain largely unknown. We show that appearance of new release sites during potentiation between cultured hippocampal neurons is due to (a) conversion of nonrecycling sites to recycling sites, (b) formation of new releasing sites from areas containing diffuse staining for the prS marker Vesicle-Associated Membrane Protein-2 and (c) budding of new recycling sites from previously existing recycling sites. In addition, potentiation is accompanied by a release probability increase in pre-existing boutons depending upon their individual probability. These prS changes precede and regulate fluorescence increase for pstS GFP-tagged-AMPA-receptor subunit GluR1. These results suggest that potentiation involves early changes in the prS terminal including remodeling and release probability increase of pre-existing synapses
PMCID:1570425
PMID: 16957772
ISSN: 0261-4189
CID: 71564
Simultaneous optical measurements of cytosolic Ca2+ and cAMP in single cells
Harbeck, Mark C; Chepurny, Oleg; Nikolaev, Viacheslav O; Lohse, Martin J; Holz, George G; Roe, Michael W
Understanding the temporal and spatial integration of the Ca2+ and adenosine 3',5'-monophosphate (cAMP) signaling pathways requires concurrent measurements of both second messengers. Here, we describe an optical technique to simultaneously image cAMP and Ca2+ concentration gradients in MIN6 mouse insulinoma cells using Epac1-camps, a Forster (or fluorescence) resonance energy transfer (FRET)-based cAMP biosensor, and Fura-2, a fluorescent indicator of Ca2+. This real-time imaging method allows investigation of the dynamic organization and integration of multiple levels of signal processing in single living cells
PMCID:3140640
PMID: 16985238
ISSN: 1525-8882
CID: 69184
Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization
Hazan, Lynn; Zugaro, Michael; Buzsaki, Gyorgy
Recent technological advances now allow for simultaneous recording of large populations of anatomically distributed neurons in behaving animals. The free software package described here was designed to help neurophysiologists process and view recorded data in an efficient and user-friendly manner. This package consists of several well-integrated applications, including NeuroScope (http://neuroscope.sourceforce.net), an advanced viewer for electrophysiological and behavioral data with limited editing capabilities, Klusters (http://klusters.sourceforge.net), a graphical cluster cutting application for manual and semi-automatic spike sorting, NDManager (GPL,see http://www.gnu.org/licenses/gpl.html), an experimental parameter and data processing manager. All of these programs are distributed under the GNU General Public License (GPL, see ), which gives its users legal permission to copy, distribute and/or modify the software. Also included are extensive user manuals and sample data, as well as source code and documentation
PMID: 16580733
ISSN: 0165-0270
CID: 148938
ORGN 716-Total synthesis of smenochromene B [Meeting Abstract]
Kienzler, Michael; Rosa, Carla PDCP; Olson, Brooke; Trauner, Dirk
ISI:000207781608716
ISSN: 0065-7727
CID: 2486052