Searched for: school:SOM
Department/Unit:Neuroscience Institute
Disrupted Axo-Glial Junctions Result in Accumulation of Abnormal Mitochondria at Nodes of Ranvier
Einheber S; Bhat MA; Salzer JL
Mitochondria and other membranous organelles are frequently enriched in the nodes and paranodes of peripheral myelinated axons, particularly those of large caliber. The physiologic role(s) of this organelle enrichment and the rheologic factors that regulate it are not well understood. Previous studies suggest that axonal transport of organelles across the nodal/paranodal region is locally regulated. In this study, we have examined the ultrastructure of myelinated axons in the sciatic nerves of mice deficient in the contactin-associated protein (Caspr), an integral junctional component. These mice, which lack the normal septate-like junctions that promote attachment of the glial (paranodal) loops to the axon, contain aberrant mitochondria in their nodal/paranodal regions. These mitochondria are typically large and swollen and occupy prominent varicosities of the nodal axolemma. In contrast, mitochondria located outside the nodal/paranodal regions of the myelinated axons appear normal. These findings suggest that paranodal junctions regulate mitochondrial transport and function in the axoplasm of the nodal/paranodal region of myelinated axons of peripheral nerves. They further implicate the paranodal junctions in playing a role, either directly or indirectly, in the local regulation of energy metabolism in the nodal region
PMCID:1855224
PMID: 17460780
ISSN: 1741-0533
CID: 94629
Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease
Kishida, Kenneth T; Hoeffer, Charles A; Hu, Daoying; Pao, Maryland; Holland, Steven M; Klann, Eric
Reactive oxygen species (ROS) are required in a number of critical cellular signaling events, including those underlying hippocampal synaptic plasticity and hippocampus-dependent memory; however, the source of ROS is unknown. We previously have shown that NADPH oxidase is required for N-methyl-D-aspartate (NMDA) receptor-dependent signal transduction in the hippocampus, suggesting that NADPH oxidase may be required for NMDA receptor-dependent long-term potentiation (LTP) and hippocampus-dependent memory. Herein we present the first evidence that NADPH oxidase is involved in hippocampal synaptic plasticity and memory. We have found that pharmacological inhibitors of NADPH oxidase block LTP. Moreover, mice that lack the NADPH oxidase proteins gp91(phox) and p47(phox), both of which are mouse models of human chronic granulomatous disease (CGD), also lack LTP. We also found that the gp91(phox) and p47(phox) mutant mice have mild impairments in hippocampus-dependent memory. The gp91(phox) mutant mice exhibited a spatial memory deficit in the Morris water maze, and the p47(phox) mutant mice exhibited impaired context-dependent fear memory. Taken together, our results are consistent with NADPH oxidase being required for hippocampal synaptic plasticity and memory and are consistent with reports of cognitive dysfunction in patients with CGD
PMCID:1592752
PMID: 16847341
ISSN: 0270-7306
CID: 107619
Speckle-field propagation in 'frozen' turbulence: brightness function approach
Dudorov, Vadim V; Vorontsov, Mikhail A; Kolosov, Valeriy V
Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength
PMID: 16835650
ISSN: 1084-7529
CID: 94053
Alternative pathways of NF-kappaB activation: a double-edged sword in health and disease
Xiao, Gutian; Rabson, Arnold B; Young, Wise; Qing, Guoliang; Qu, Zhaoxia
While the classical pathway of NF-kappaB activation plays critical roles in a wide range of biological processes, the more recently described 'non-canonical' NF-kappaB pathway has important but more restricted roles in both normal and pathological processes. The non-canonical NF-kappaB pathway, based on processing of the nf-kappab2 gene product p100 to generate p52, appears to be involved in B-cell maturation and lymphoid development. Deregulated activation of this pathway has been observed in a variety of malignant and autoimmune diseases, thus inhibitors that specifically target p100 processing might be predicted to have potential roles as immunomodulators and in the therapy of malignant diseases. We review current understandings of NF-kappaB activation, particularly the mechanisms of p100 processing under both physiological and pathological conditions
PMID: 16793322
ISSN: 1359-6101
CID: 94096
Olfactory neuronal dynamics in behaving animals
Rinberg, Dmitry; Gelperin, Alan
More than 50 years have passed since the first recording of neuronal responses to an odor stimulus from the primary olfactory brain area, the main olfactory bulb. During this time very little progress has been achieved in understanding neuronal dynamics in the olfactory bulb in awake behaving animals, which is very different from that in anesthetized preparations. In this paper we formulate a new framework containing the main reasons for studying olfactory neuronal dynamics in awake animals and review advances in the field within this new framework.
PMID: 16765609
ISSN: 1084-9521
CID: 174911
How silent is the brain: is there a "dark matter" problem in neuroscience?
Shoham, Shy; O'Connor, Daniel H; Segev, Ronen
Evidence from a variety of recording methods suggests that many areas of the brain are far more sparsely active than commonly thought. Here, we review experimental findings pointing to the existence of neurons which fire action potentials rarely or only to very specific stimuli. Because such neurons would be difficult to detect with the most common method of monitoring neural activity in vivo-extracellular electrode recording-they could be referred to as "dark neurons," in analogy to the astrophysical observation that much of the matter in the universe is undetectable, or dark. In addition to discussing the evidence for largely silent neurons, we review technical advances that will ultimately answer the question: how silent is the brain?
PMID: 16550391
ISSN: 0340-7594
CID: 1703872
Mechanisms of neurotrophin receptor signalling
Zampieri, N; Chao, M V
Regulation of cell survival decisions and neuronal plasticity by neurotrophins are mediated by two classes of receptors, Trks (tropomyosin receptor kinases) and p75, the first discovered member of the tumour necrosis factor receptor superfamily. The p75 receptor participates with the TrkA receptor in the formation of high-affinity nerve growth factor-binding sites to promote survival under limiting concentrations of neurotrophins. Activation of Trk receptors leads to increased phosphorylation of Shc (Src homology and collagen homology), phospholipase C-gamma and novel adaptor molecules, such as the ARMS (ankyrin-rich membrane spanning)/Kidins220 protein. Small ligands that interact with G-protein-coupled receptors can also activate Trk receptor kinase activity. Transactivation of Trk receptors and their downstream signalling pathways raise the possibility of using small molecules to elicit neuroprotective effects for the treatment of neurodegenerative diseases. Like amyloid precursor protein and Notch, p75 is a substrate for gamma-secretase cleavage. The p75 receptor undergoes an alpha-secretase-mediated release of the extracellular domain followed by a gamma-secretase-mediated intramembrane cleavage. Cleavage of p75 may represent a general mechanism for transmitting signals as an independent receptor and as a co-receptor for other signalling systems
PMID: 16856873
ISSN: 0300-5127
CID: 68629
BDNF-mediated neurotransmission relies upon a myosin VI motor complex
Yano, Hiroko; Ninan, Ipe; Zhang, Hong; Milner, Teresa A; Arancio, Ottavio; Chao, Moses V
Brain-derived neurotrophic factor (BDNF) has been implicated in higher-order cognitive functions and in psychiatric disorders such as depression and schizophrenia. BDNF modulates synaptic transmission and plasticity primarily through the TrkB receptor, but the molecules involved in BDNF-mediated synaptic modulation are largely unknown. Myosin VI (Myo6) is a minus end-directed actin-based motor found in neurons that express Trk receptors. Here we report that Myo6 and a Myo6-binding protein, GIPC1, form a complex that can engage TrkB. Myo6 and GIPC1 were necessary for BDNF-TrkB-mediated facilitation of long-term potentiation in postnatal day 12-13 (P12-13) hippocampus. Moreover, BDNF-mediated enhancement of glutamate release from presynaptic terminals depended not only upon TrkB but also upon Myo6 and GIPC1. Similar defects in basal synaptic transmission as well as presynaptic properties were observed in Myo6 and GIPC1 mutant mice. Together, these results define an important role for the Myo6-GIPC1 motor complex in presynaptic function and in BDNF-TrkB-mediated synaptic plasticity
PMID: 16819522
ISSN: 1097-6256
CID: 66607
Brain development and ADHD
Krain, Amy L; Castellanos, F Xavier
Attention-Deficit/Hyperactivity Disorder (ADHD) is characterized by excessive inattention, hyperactivity, and impulsivity, either alone or in combination. Neuropsychological findings suggest that these behaviors result from underlying deficits in response inhibition, delay aversion, and executive functioning which, in turn, are presumed to be linked to dysfunction of frontal-striatal-cerebellar circuits. Over the past decade, magnetic resonance imaging (MRI) has been used to examine anatomic differences in these regions between ADHD and control children. In addition to quantifying differences in total cerebral volume, specific areas of interest have been prefrontal regions, basal ganglia, the corpus callosum, and cerebellum. Differences in gray and white matter have also been examined. The ultimate goal of this research is to determine the underlying neurophysiology of ADHD and how specific phenotypes may be related to alterations in brain structure
PMID: 16480802
ISSN: 0272-7358
CID: 64245
Fabrication and use of high-speed, concentric h+- and Ca2+-selective microelectrodes suitable for in vitro extracellular recording
Fedirko, Nataliya; Svichar, Nataliya; Chesler, Mitchell
Ion-selective microelectrodes (ISMs) have been used extensively in neurophysiological studies. ISMs selective for H(+) and Ca(2+) are notable for their sensitivity and selectivity, but suffer from a slow response time, and susceptibility to noise because of the high electrical resistance of the respective ion exchange cocktails. These drawbacks can be overcome by using a 'coaxial' or 'concentric' inner micropipette to shunt the bulk of the ion exchanger resistance. This approach was used decades ago to record extracellular [Ca(2+)] transients in cat cortex, but has not been subsequently used. Here, we describe a method for the rapid fabrication of concentric pH- and Ca(2+)-selective microelectrodes useful for extracellular studies in brain slices or other work in vitro. Construction was simplified compared with previous implementations, by using commercially available, thin-walled borosilicate glass, drawing an outer barrel with a rapid taper (similar to a patch pipette), and by use of a quick and reliable silanization procedure. Using a piezoelectric stepper to effect a rapid solution change, the response time constants of the concentric pH and Ca(2+)-electrodes were 14.9 +/- 1.3 and 5.3 +/- 0.90 ms, respectively. Use of these concentric ISMs is demonstrated in rat hippocampal slices. Activity-dependent, extracellular pH, and [Ca(2+)] transients are shown to arise two- to threefold faster, and attain amplitudes two- to fourfold greater, when recorded by concentric versus conventional ISMs. The advantage of concentric ISMs for studies of ion transport and ion diffusion is discussed
PMID: 16672303
ISSN: 0022-3077
CID: 69056