Searched for: school:SOM
Department/Unit:Neuroscience Institute
Homothorax in the clock [Meeting Abstract]
Collins, Ben; Morante, Javier; Desplan, Claude; Blau, Justin
ISI:000243309500050
ISSN: 0167-7063
CID: 2430012
Effect of circulatory congestion on the components of pulmonary diffusing capacity in morbid obesity
Oppenheimer, Beno W; Berger, Kenneth I; Rennert, Douglas A; Pierson, Richard N; Norman, Robert G; Rapoport, David M; Kral, John G; Goldring, Roberta M
OBJECTIVE: Obese patients without clinically apparent heart disease may have a high output state and elevated total and central blood volumes. Central circulatory congestion should result in elevated pulmonary diffusing capacity (DLCO) and capillary blood volume (Vc) reflecting pulmonary capillary recruitment; however, the effect on membrane diffusion (Dm) is uncertain. We examined DLCO and its partition into Vc and Dm in 13 severely obese subjects (BMI = 51 +/- 14 kg/m2) without manifest cardiopulmonary disease before and after surgically induced weight loss. RESEARCH METHODS AND PROCEDURES: DLCO and its partition into Vc and Dm [referenced to alveolar volume (VA)] as described by Roughton and Forster, total body water by tritiated water, and fat distribution by waist-to-hip ratio were performed. RESULTS: Despite normal DLCO (mean 98 +/- 16% predicted), Vc/VA was increased (mean 118 +/- 30% predicted), and Dm/VA was reduced (mean 77 +/- 34% predicted). Nine of 13 subjects were restudied after weight loss (mean 52 +/- 43 kg); Vc/VA decreased to 89 +/- 18% predicted (p = 0.01), and Dm/VA increased to 139 +/- 30% predicted (p < 0.01). Increasing total body water was associated with both increasing Vc (r = 0.74, p = 0.01) and increasing waist-to-hip ratio (r = 0.65, p = 0.02), indicating that circulatory congestion increases with increasing central obesity. DISCUSSION: Severely obese subjects without manifest cardiopulmonary disease may have increased Vc indicating central circulatory congestion and reduced Dm suggesting associated alveolar capillary leak, despite normal DLCO. Reversibility with weight loss is in accord with reversibility of the hemodynamic abnormalities of obesity.
PMID: 16899798
ISSN: 1930-7381
CID: 156666
Opposed-phase MRI for fat quantification in fat-water phantoms with 1H MR spectroscopy to resolve ambiguity of fat or water dominance
Chang, Jerry S; Taouli, Bachir; Salibi, Nouha; Hecht, Elizabeth M; Chin, Deanna G; Lee, Vivian S
OBJECTIVE: The purpose of the study was to quantify the fat fraction in nine fat-water phantoms containing 0-80% fat using opposed-phase imaging with the qualitative guidance of 1H MR spectroscopy (MRS), which was used by observer 1 to visually assess the sizes of the water and fat peaks to apply two alternative mathematic formulas for the calculation of the fat fraction. In addition, the fat fraction was also quantified directly with 1H MRS as an independent method by two observers (observers 2 and 3). CONCLUSION: The fat fraction calculated with opposed-phase imaging (FF(OPI)) and that calculated with 1H MRS (FF(MRS)) correlated well with the known fat fractions of the phantoms (FF(P)): r = 0.99 for FF(OPI); p < 0.0001 and r = 0.96-0.98 for FF(MRS); p < 0.001, for observers 2 and 3, respectively. Opposed-phase imaging should be combined with 1H MRS to ensure accurate quantification of the fat fraction
PMID: 16794122
ISSN: 1546-3141
CID: 66705
Blood-CSF barrier function in the rat embryo
Johansson, P A; Dziegielewska, K M; Ek, C J; Habgood, M D; Liddelow, S A; Potter, A M; Stolp, H B; Saunders, N R
Blood-cerebrospinal fluid (CSF) barrier function and expansion of the ventricular system were investigated in embryonic rats (E12-18). Permeability markers (sucrose and inulin) were injected intraperitoneally and concentrations measured in plasma and CSF at two sites (lateral and 4th ventricles) after 1 h. Total protein concentrations were also measured. CSF/plasma concentration ratios for endogenous protein were stable at approximately 20% at E14-18 and subsequently declined. In contrast, ratios for sucrose (100%) and inulin (40%) were highest at the earliest ages studied (E13-14) and then decreased substantially. Between E13 and E16 the volume of the lateral ventricles increased over three-fold. Decreasing CSF/plasma concentration ratios for small, passively diffusing molecules during embryonic development may not reflect changes in permeability. Instead, increasing volume of distribution appears to be important in this decline. The intracellular presence of a small marker (3000 Da biotin-dextranamine) in plexus epithelial cells following intraperitoneal injection indicates a transcellular route of transfer. Ultrastructural evidence confirmed that choroid plexus tight junctions are impermeable to small molecules at least as early as E15, indicating the blood-CSF barrier is morphologically and functionally mature early in embryonic development. Comparison of two albumins (human and bovine) showed that transfer of human albumin (surrogate for endogenous protein) was 4-5 times greater than bovine, indicating selective blood-to-CSF transfer. The number of plexus epithelial cells immunopositive for endogenous plasma protein increased in parallel with increases in total protein content of the expanding ventricular system. Results suggest that different transcellular mechanisms for protein and small molecule transfer are operating across the embryonic blood-CSF interface.
PMID: 16800861
ISSN: 0953-816x
CID: 2743972
Robust fully automated shimming of the human brain for high-field 1H spectroscopic imaging
Hetherington, Hoby P; Chu, Wen-Jang; Gonen, Oded; Pan, Jullie W
Although a variety of methods have been proposed to provide automated adjustment of shim homogeneity, these methods typically fail or require large numbers of iterations in vivo when applied to regions with poor homogeneity, such as the temporal lobe. These limitations are largely due to 1) the limited accuracy of single evolution time measurements when full B0 mapping studies are used, and 2) inaccuracies arising from projection-based methods when the projections pass through regions where the inhomogeneity exceeds the order of the fitted parameters. To overcome these limitations we developed a novel B0 mapping method using multiple evolution times with a novel unwrapping scheme in combination with a user-defined ROI selection tool. We used these methods at 4T on 10 control subjects to obtain high-resolution spectroscopic images of glutamate from the bilateral hippocampi
PMID: 16767750
ISSN: 0740-3194
CID: 71945
Optimizing the efficiency of high-field multivoxel spectroscopic imaging by multiplexing in space and time
Goelman, Gadi; Liu, Songtao; Hess, David; Gonen, Oded
A new strategy to yield information from the maximum number of voxels, each at the optimum signal-to-noise ratio (SNR) per unit time, in MR spectroscopic imaging (MRSI) is introduced. In the past, maximum acquisition duty-cycle was obtained by multiplexing in time several single slices each repetition time (TR), while optimal SNR was achieved by encoding the entire volume of interest (VOI) each TR. We show that optimal SNR and acquisition efficiency can both be achieved simultaneously by multiplexing in space and time several slabs of several slices, each. Since coverage of common VOIs in 3D proton MRSI in the human brain typically requires eight or more slices, at 3 T or higher magnetic fields, two or more slabs can fit into the optimum TR (approximately 1.6 s). Since typically four or less slices would then fit into each slab, Hadamard encoding is favored in that direction for slice profile reasons. It is demonstrated that per fixed examination length, the new method gives, at 3 T, twice as many voxels, each of the same SNR and size, compared with current 3D chemical shift imaging techniques. It is shown that this gain will increase for more extensive spatial coverage or higher fields
PMID: 16767711
ISSN: 0740-3194
CID: 69240
Removal of Pax6 partially rescues the loss of ventral structures in Shh null mice
Fuccillo, Marc; Rutlin, Michael; Fishell, Gord
Pax6 and Gli3 are dorsally expressed genes that are known to antagonize sonic hedgehog (Shh) activity. We have previously shown that dorsoventral patterning defects seen in Shh(-/-) mutants are rescued in Shh(-/-);Gli3(-/-) compound mutants. Here we investigate if the loss of Pax6 can also ameliorate defects seen in Shh(-/-) mutants. In support of this notion, we observe that the fusion of the cerebral vesicles seen in Shh(-/-) mutants is partially corrected in E12.5 Shh(-/-);Pax6(-/-) compound mutants. Investigation of pan-ventral markers such as Dlx2 also shows that, unlike Shh(-/-), a broad domain of expression of this gene is observed in Shh(-/-);Pax6(-/-) mice. Interestingly, we observe that while the expression of ER81 in the ventral telencephalon is expanded, the expression of Ebf1 is lost. This suggests that the rescued ventral domain observed in Shh(-/-);Pax6(-/-) mice is the dorsal lateral ganglionic eminence region. With regard to dorsal telencephalic patterning, we also observe rescue of the pallial-subpallial boundary, as well as a partial rescue of the dorsal midline. Together, our findings are consistent with Pax6 function being required for aspects of Gli3-mediated telencephalic patterning
PMID: 16766714
ISSN: 1047-3211
CID: 67004
Developmental changes in the expression of calbindin and potassium-channel subunits Kv3.1b and Kv3.2 in mouse Renshaw cells (vol 139, pg 531, 2006) [Correction]
Song, ZM; Hu, J; Rudy, B; Redman, SJ
ISI:000239033300050
ISSN: 0306-4522
CID: 66448
Single cell gene expression profiling in Alzheimer's disease
Ginsberg, Stephen D; Che, Shaoli; Counts, Scott E; Mufson, Elliott J
Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD
PMCID:3593387
PMID: 16815214
ISSN: 1545-5343
CID: 140351
Membrane diffusion in diseases of the pulmonary vasculature
Oppenheimer, Beno W; Berger, Kenneth I; Hadjiangelis, Nicos P; Norman, Robert G; Rapoport, David M; Goldring, Roberta M
INTRODUCTION: We examined pulmonary diffusing capacity (D(LCO)) and its partition in pulmonary vascular diseases without evident parenchymal disease to assess the pattern and proportionality of change in membrane diffusion (D(m)) and capillary blood volume (V(c)). Disproportionate reduction in D(m) relative to V(c) (low D(m)/V(c)) in these diseases has been attributed to associated alveolar membrane/parenchymal disease, thus providing a potentially important diagnostic tool. METHODS: Diseases included: idiopathic pulmonary arterial hypertension (n=6), chronic thromboembolic disease (n=5), and intravenous drug use (n=14), providing a spectrum of pulmonary vascular diseases. V(c) and D(m) were determined as described by Roughton and Forster. RESULTS: All diseases showed a reduced V(c) (59+/-10, 69+/-14, 71+/-21 % predicted, respectively) and D(m) (76+/-22, 53+/-19, 63+/-16 % predicted, respectively) with no differences between groups (p>0.05). Disproportionate reduction of D(m) (D(m)/V(c) % predicted <1) was seen in all diseases (range 0.36-1.89). A mathematical analysis is presented to illustrate that changes in vascular geometry may additionally influence the proportionality of changes in D(m) and V(c). The mathematical analysis suggests that when reduction in patency of some vessels co-exits with compensatory dilatation of the remaining vasculature, a disproportionate reduction in D(m) relative to V(c) may result. CONCLUSIONS: The balance between vascular curtailment and compensatory dilatation may contribute to the variability of the D(m)/V(c) relationship seen in pulmonary vascular disease. Disproportionate reduction in D(m) relative to V(c) may result from this imbalance and need not imply subclinical alveolar membrane and/or parenchymal disease.
PMID: 16376536
ISSN: 0954-6111
CID: 156665