Searched for: school:SOM
Department/Unit:Cell Biology
Barth syndrome, a human disorder of cardiolipin metabolism
Schlame, Michael; Ren, Mindong
Barth syndrome is an X-linked recessive disease caused by mutations in the tafazzin gene. Patients have reduced concentration and altered composition of cardiolipin, the specific mitochondrial phospholipid, and they have variable clinical findings, often including heart failure, myopathy, neutropenia, and growth retardation. This article provides an overview of the molecular basis of Barth syndrome. It is argued that tafazzin, a phospholipid acyltransferase, is involved in acyl-specific remodeling of cardiolipin, which promotes structural uniformity and molecular symmetry among the cardiolipin molecular species. Inhibition of this pathway leads to changes in mitochondrial architecture and function
PMID: 16973164
ISSN: 0014-5793
CID: 69247
Sorting through the cell biology of Alzheimer's disease: intracellular pathways to pathogenesis
Small, Scott A; Gandy, Sam
During the first 100 years of Alzheimer's disease research, this devastating and intractable disorder has been characterized at the clinical, histological, and molecular levels. Nevertheless, many key mechanistic questions remain unanswered. Here we will emphasize the importance of the cell biology of Alzheimer's disease, reviewing the relevant literature that has expanded our mechanistic understanding, with a particular focus on pathways regulating protein sorting. Accumulated evidence indicates that sorting pathways may be uniquely vulnerable to disease pathogenesis, and recent studies have begun to reveal disease-related defects in the regulation of protein sorting
PMCID:4820242
PMID: 17015224
ISSN: 0896-6273
CID: 139860
A genetic screen identifies genes essential for development of myelinated axons in zebrafish
Pogoda, Hans-Martin; Sternheim, Nitzan; Lyons, David A; Diamond, Brianne; Hawkins, Thomas A; Woods, Ian G; Bhatt, Dimple H; Franzini-Armstrong, Clara; Dominguez, Claudia; Arana, Naomi; Jacobs, Jennifer; Nix, Rebecca; Fetcho, Joseph R; Talbot, William S
The myelin sheath insulates axons in the vertebrate nervous system, allowing rapid propagation of action potentials via saltatory conduction. Specialized glial cells, termed Schwann cells in the PNS and oligodendrocytes in the CNS, wrap axons to form myelin, a compacted, multilayered sheath comprising specific proteins and lipids. Disruption of myelinated axons causes human diseases, including multiple sclerosis and Charcot-Marie-Tooth peripheral neuropathies. Despite the progress in identifying human disease genes and other mutations disrupting glial development and myelination, many important unanswered questions remain about the mechanisms that coordinate the development of myelinated axons. To address these questions, we began a genetic dissection of myelination in zebrafish. Here we report a genetic screen that identified 13 mutations, which define 10 genes, disrupting the development of myelinated axons. We present the initial characterization of seven of these mutations, defining six different genes, along with additional characterization of mutations that we have described previously. The different mutations affect the PNS, the CNS, or both, and phenotypic analyses indicate that the genes affect a wide range of steps in glial development, from fate specification through terminal differentiation. The analysis of these mutations will advance our understanding of myelination, and the mutants will serve as models of human diseases of myelin.
PMID: 16875686
ISSN: 0012-1606
CID: 1446592
Inhibitory role of IFN-gamma-inducible lysosomal thiol reductase in T cell activation
Barjaktarevic, Igor; Rahman, Ayman; Radoja, Sasa; Bogunovic, Branka; Vollmer, Alison; Vukmanovic, Stanislav; Maric, Maja
IFN-gamma-inducible lysosomal thiol reductase (GILT) is a unique thiol reductase with optimal enzymatic activity at low pH. GILT plays a crucial role in unfolding the antigenic proteins in preparation for their proteolytic cleavage and presentation of resulting peptides by MHC class II. In this study, we demonstrate that GILT is expressed in T lymphocytes and that it has an APC-nonrelated role in the regulation of T cell activation. Surprisingly, comparison of wild-type and GILT-deficient T cell activation in vitro revealed stronger responsiveness in the absence of GILT. The effect of GILT in reducing the proliferative and cytotoxic responses was endogenous to T cells and resulted from decreased sensitivity at the individual cell level. Therefore, a molecule with primarily lysosomal localization suppresses T cell activation, a process characterized by signal transmission from plasma membrane to cytoplasm and nucleus.
PMID: 16982871
ISSN: 0022-1767
CID: 908142
Zymosan-induced glycerylprostaglandin and prostaglandin synthesis in resident peritoneal macrophages: roles of cyclo-oxygenase-1 and -2
Rouzer, Carol A; Tranguch, Susanne; Wang, Haibin; Zhang, Hao; Dey, Sudhansu K; Marnett, Lawrence J
COX [cyclo-oxygenase; PG (prostaglandin) G/H synthase] oxygenates AA (arachidonic acid) and 2-AG (2-arachidonylglycerol) to endoperoxides that are converted into PGs and PG-Gs (glycerylprostaglandins) respectively. In vitro, 2-AG is a selective substrate for COX-2, but in zymosan-stimulated peritoneal macrophages, PG-G synthesis is not sensitive to selective COX-2 inhibition. This suggests that COX-1 oxygenates 2-AG, so studies were carried out to identify enzymes involved in zymosan-dependent PG-G and PG synthesis. When macrophages from COX-1-/- or COX-2-/- mice were treated with zymosan, 20-25% and 10-15% of the PG and PG-G synthesis observed in wild-type cells respectively was COX-2 dependent. When exogenous AA and 2-AG were supplied to COX-2-/- macrophages, PG and PG-G synthesis was reduced as compared with wild-type cells. In contrast, when exogenous substrates were provided to COX-1-/- macrophages, PG-G but not PG synthesis was reduced. Product synthesis also was evaluated in macrophages from cPLA(2alpha) (cytosolic phospholipase A2alpha)-/- mice, in which zymosan-induced PG synthesis was markedly reduced, and PG-G synthesis was increased approx. 2-fold. These studies confirm that peritoneal macrophages synthesize PG-Gs in response to zymosan, but that this process is primarily COX-1-dependent, as is the synthesis of PGs. They also indicate that the 2-AG and AA used for PG-G and PG synthesis respectively are derived from independent pathways.
PMCID:1570173
PMID: 16787386
ISSN: 1470-8728
CID: 2157352
Alterations in ribosome biogenesis cause specific defects in C. elegans hermaphrodite gonadogenesis
Voutev, Roumen; Killian, Darrell J; Ahn, James Hyungsoo; Hubbard, E Jane Albert
Ribosome biogenesis is a cell-essential process that influences cell growth, proliferation, and differentiation. How ribosome biogenesis impacts development, however, is poorly understood. Here, we establish a link between ribosome biogenesis and gonadogenesis in Caenorhabditis elegans that affects germline proliferation and patterning. Previously, we determined that pro-1(+)activity is required in the soma--specifically, the sheath/spermatheca sublineage--to promote normal proliferation and prevent germline tumor formation. Here, we report that PRO-1, like its yeast ortholog IPI3, influences rRNA processing. pro-1 tumors are suppressed by mutations in ncl-1 or lin-35/Rb, both of which elevate pre-rRNA levels. Thus, in this context, lin-35/Rb acts as a soma-autonomous germline tumor promoter. We further report the characterization of two additional genes identified for their germline tumor phenotype, pro-2 and pro-3, and find that they, too, encode orthologs of proteins involved in ribosome biogenesis in yeast (NOC2 and SDA1, respectively). Finally, we demonstrate that depletion of additional C. elegans orthologs of yeast ribosome biogenesis factors display phenotypes similar to depletion of progenes. We conclude that the C. elegans distal sheath is particularly sensitive to alterations in ribosome biogenesis and that ribosome biogenesis defects in one tissue can non-autonomously influence proliferation in an adjacent tissue
PMID: 16876152
ISSN: 0012-1606
CID: 72491
Characterization of erasin (UBXD2): a new ER protein that promotes ER-associated protein degradation
Liang, Jing; Yin, Chaobo; Doong, Howard; Fang, Shengyun; Peterhoff, Corrine; Nixon, Ralph A; Monteiro, Mervyn J
Ubiquitin regulator-X (UBX) is a discrete protein domain that binds p97/valosin-containing protein (VCP), a molecular chaperone involved in diverse cell processes, including endoplasmic-reticulum-associated protein degradation (ERAD). Here we characterize a human UBX-containing protein, UBXD2, that is highly conserved in mammals, which we have renamed erasin. Biochemical fractionation, immunofluorescence and electron microscopy, and protease protection experiments suggest that erasin is an integral membrane protein of the endoplasmic reticulum and nuclear envelope with both its N- and C-termini facing the cytoplasm or nucleoplasm. Localization of GFP-tagged deletion derivatives of erasin in HeLa cells revealed that a single 21-amino-acid sequence located near the C-terminus is necessary and sufficient for localization of erasin to the endoplasmic reticulum. Immunoprecipitation and GST-pulldown experiments confirmed that erasin binds p97/VCP via its UBX domain. Additional immunoprecipitation assays indicated that erasin exists in a complex with other p97/VCP-associated factors involved in ERAD. Overexpression of erasin enhanced the degradation of the ERAD substrate CD3delta, whereas siRNA-mediated reduction of erasin expression almost completely blocked ERAD. Erasin protein levels were increased by endoplasmic reticulum stress. Immunohistochemical staining of brain tissue from patients with Alzheimer's disease and control subjects revealed that erasin accumulates preferentially in neurons undergoing neurofibrillary degeneration in Alzheimer's disease. These results suggest that erasin may be involved in ERAD and in Alzheimer's disease.
PMID: 16968747
ISSN: 0021-9533
CID: 72831
Expression of Plasmodium falciparum genes involved in erythrocyte invasion varies among isolates cultured directly from patients
Nery, Susana; Deans, Anne-Marie; Mosobo, Moses; Marsh, Kevin; Rowe, J Alexandra; Conway, David J
Plasmodium falciparum merozoites invade erythrocytes using a range of alternative ligands that includes erythrocyte binding antigenic proteins (EBAs) and reticulocyte binding protein homologues (Rh). Variation in the expression of some of these genes among culture-adapted parasite lines correlates with the use of different erythrocyte receptors. Here, expression profiles of four Rh genes and eba175 are analysed in a sample of 42 isolates cultured from malaria patients in Kenya. The profiles cluster into distinct groups, largely because of very strong negative correlations between the levels of expression of particular gene pairs (Rh1 versus Rh2b, eba175 versus Rh2b, and eba175 versus Rh4), previously associated with alternative invasion pathways in culture-adapted parasite lines. High levels of eba175 are seen in isolates in expression profile group I, and may be associated with sialic acid-dependent invasion. Groups II and III are, respectively, characterized by high levels of Rh2b and Rh4, and are more likely to be associated with sialic acid-independent invasion.
PMCID:2877258
PMID: 16837080
ISSN: 0166-6851
CID: 2104892
Endoplasmic reticulum stress signaling in disease
Marciniak, Stefan J; Ron, David
The extracellular space is an environment hostile to unmodified polypeptides. For this reason, many eukaryotic proteins destined for exposure to this environment through secretion or display at the cell surface require maturation steps within a specialized organelle, the endoplasmic reticulum (ER). A complex homeostatic mechanism, known as the unfolded protein response (UPR), has evolved to link the load of newly synthesized proteins with the capacity of the ER to mature them. It has become apparent that dysfunction of the UPR plays an important role in some human diseases, especially those involving tissues dedicated to extracellular protein synthesis. Diabetes mellitus is an example of such a disease, since the demands for constantly varying levels of insulin synthesis make pancreatic beta-cells dependent on efficient UPR signaling. Furthermore, recent discoveries in this field indicate that the importance of the UPR in diabetes is not restricted to the beta-cell but is also involved in peripheral insulin resistance. This review addresses aspects of the UPR currently understood to be involved in human disease, including their role in diabetes mellitus, atherosclerosis, and neoplasia
PMID: 17015486
ISSN: 0031-9333
CID: 71595
Midterm results of primary total knee arthroplasty using a dished polyethylene insert with a recessed or resected posterior cruciate ligament
Sathappan, Sathappan S; Wasserman, Bradley; Jaffe, William L; Bong, Matthew; Walsh, Michael; Di Cesare, Paul E
Use of a dished polyethylene insert in 114 total knee arthroplasties, all with the posterior cruciate ligament resected or recessed, was retrospectively studied. Patients were evaluated at a mean follow-up of 8.3 years. Mean range of motion increased from 92 degrees to 111 degrees . Mean Knee Society pain and function scores increased from 35.2 and 39.7 to 91.3 and 74.7, respectively. WOMAC scores improved significantly in each category evaluated, including pain, stiffness, and physical function. Kaplan-Meier survivorship was 95% at 10 years (95% confidence interval, 82%-99%). The use of a dished polyethylene insert in primary total knee arthroplasty provides good to excellent midterm results regardless of whether the posterior cruciate ligament is recessed or sacrificed
PMID: 17027544
ISSN: 0883-5403
CID: 70088