Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Neuroscience Institute

Total Results:

13474


Temporal and probabilistic discounting of rewards in children and adolescents: Effects of age and ADHD symptoms

Scheres, Anouk; Dijkstra, Marianne; Ainslie, Eleanor; Balkan, Jaclyn; Reynolds, Brady; Sonuga-Barke, Edmund; Castellanos, F Xavier
This study investigated whether age and ADHD symptoms affected choice preferences in children and adolescents when they chose between (1) small immediate rewards and larger delayed rewards and (2) small certain rewards and larger probabilistic uncertain rewards. A temporal discounting (TD) task and a probabilistic discounting (PD) task were used to measure the degree to which the subjective value of a large reward decreased as one had to wait longer for it (TD), and as the probability of obtaining it decreased (PD). Rewards used were small amounts of money. In the TD task, the large reward (10 cents) was delayed by between 0 and 30s, and the immediate reward varied in magnitude (0-10 cents). In the PD task, receipt of the large reward (10 cents) varied in likelihood, with probabilities of 0, 0.25, 0.5, 0.75, and 1.0 used, and the certain reward varied in magnitude (0-10 cents). Age and diagnostic group did not affect the degree of PD of rewards: All participants made choices so that total gains were maximized. As predicted, young children, aged 6-11 years (n=25) demonstrated steeper TD of rewards than adolescents, aged 12-17 years (n=21). This effect remained significant even when choosing the immediate reward did not shorten overall task duration. This, together with the lack of interaction between TD task version and age, suggests that steeper discounting in young children is driven by reward immediacy and not by delay aversion. Contrary to our predictions, participants with ADHD (n=22) did not demonstrate steeper TD of rewards than controls (n=24). These results raise the possibility that strong preferences for small immediate rewards in ADHD, as found in previous research, depend on factors such as total maximum gain and the use of fixed versus varied delay durations. The decrease in TD as observed in adolescents compared to children may be related to developmental changes in the (dorsolateral) prefrontal cortex. Future research needs to investigate these possibilities
PMID: 16303152
ISSN: 0028-3932
CID: 64248

Galanin fiber hypertrophy within the cholinergic nucleus basalis during the progression of Alzheimer's disease

Counts, Scott E; Chen, Er-Yun; Che, Shaoli; Ikonomovic, Milos D; Wuu, Joanne; Ginsberg, Stephen D; Dekosky, Steven T; Mufson, Elliott J
Galanin (GAL)-containing fibers enlarge and hyperinnervate remaining cholinergic basal forebrain (CBF) neurons within the anterior nucleus basalis (NB) in late-stage Alzheimer's disease (AD). Whether GAL hypertrophy occurs in the CBF in the prodromal or early stages of AD remains unknown. The present study used GAL immunohistochemistry and an unbiased semiquantitative scoring method to evaluate GAL innervation in the anterior NB of subjects clinically diagnosed as having no cognitive impairment, mild cognitive impairment or early-stage (mild/moderate) AD. There was no difference in GAL fiber staining within the anterior NB across the three clinical groups examined. Furthermore, GAL fiber innervation was not correlated with the number of NB neurons expressing the nerve growth factor receptors p75(NTR) or TrkA or with cortical choline acetyltransferase activity in the same cases. Single-cell gene expression analysis demonstrated that cholinergic NB neurons express mRNA for the GAL receptors GALR1, GALR2 and GALR3, yet the levels of these mRNAs were unchanged across the three diagnostic groups. These observations indicate that GAL hypertrophy within the anterior NB subfield is a late-stage AD response, which may play a role in regulating the cholinergic tone of remaining basocortical projection neurons.
PMID: 16410678
ISSN: 1420-8008
CID: 165462

CNS recording and stiumulation using intravascular submicron-scale probes [Meeting Abstract]

Watanabe H; Ruddy B; Aquetil PA; Walton KD; Hunter I; Llinas R
ORIGINAL:0006275
ISSN: 1558-3635
CID: 75342

Neuronal gene expression profiling: uncovering the molecular biology of neurodegenerative disease

Mufson, Elliott J; Counts, Scott E; Che, Shaoli; Ginsberg, Stephen D
The development of gene array techniques to quantify expression levels of dozens to thousands of genes simultaneously within selected tissue samples from control and diseased brain has enabled researchers to generate expression profiles of vulnerable neuronal populations in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, and Creutzfeld-Jakob disease. Intriguingly, gene expression analysis reveals that vulnerable brain regions in many of these diseases share putative pathogenetic alterations in common classes of genes, including decrements in synaptic transcript levels and increments in immune response transcripts. Thus, gene expression profiles of diseased neuronal populations may reveal mechanistic clues to the molecular pathogenesis underlying various neurological diseases and aid in identifying potential therapeutic targets. This chapter will review how regional and single cell gene array technologies have advanced our understanding of the genetics of human neurological disease.
PMID: 17027698
ISSN: 0079-6123
CID: 165460

Non-auditory localization of midlatency auditory evoked activity (P50): a MEG study [Meeting Abstract]

Garcia-Rill E; Garcia J; Moran KA; Findley WM; Walton KD; Llinas R
ORIGINAL:0006278
ISSN: 1558-3635
CID: 75345

Integrated four dimensional registration and segmentation of dynamic renal MR images

Song, Ting; Lee, Vivian S; Rusinek, Henry; Wong, Samson; Laine, Andrew F
In this paper a novel approach for the registration and segmentation of dynamic contrast enhanced renal MR images is presented. This integrated method is motivated by the observation of the reciprocity between registration and segmentation in 4D time-series images. Fully automated Fourier-based registration with sub-voxel accuracy and semi-automated time-series segmentation were intertwined to improve the accuracy in a multi-step fashion. We have tested our algorithm on several real patient data sets. Clinical validation showed remarkable and consistent agreement between the proposed method and manual segmentation by experts
PMID: 17354841
ISSN: 0302-9743
CID: 73256

Rhythms of the brain

Buzsaki, Gyorgy
Oxford UK: Oxford Univ. Press, 2006
Extent: XIV, 448 S. : ill., graph. ; 25 cm.
ISBN: 9780195301069
CID: 2374

Transfection of mammalian cells with connexins and measurement of voltage sensitivity of their gap junctions

del Corsso, Cristiane; Srinivas, Miduturu; Urban-Maldonado, Marcia; Moreno, Alonso P; Fort, Alfredo G; Fishman, Glenn I; Spray, David C
Vertebrate gap junction channels are formed by a family of more than 20 connexin proteins. These gap junction proteins are expressed with overlapping cellular and tissue specificity, and coding region mutations can cause human hereditary diseases. Here we present a summary of what has been learned from voltage clamp studies performed on cell pairs either endogenously expressing gap junctions or in which connexins are exogenously expressed. General protocols presented here are currently used to transfect mammalian cells with connexins and to study the biophysical properties of the heterologously expressed connexin channels. Transient transfection is accomplished overnight with maximal expression occurring at about 36 h; stable transfectants normally can be generated within three or four weeks through colony selection. Electrophysiological protocols are presented for analysis of voltage dependence and single-channel conductance of gap junction channels as well as for studies of chemical gating of these channels
PMID: 17487162
ISSN: 1750-2799
CID: 96065

Studying neuronal metabolism at the single organelle level [Meeting Abstract]

Ivannikov MV; Takamura Y; Sugimori M; Llinas R
ORIGINAL:0006277
ISSN: 1558-3635
CID: 75344

Microarray screen for synaptic genes in the neuromuscular junction

Jevsek, Marko; Burden, Steven J
The formation of neuromuscular synapses requires a complex exchange of signals between motor neurons and skeletal muscle fibers. Essential for the formation of neuromuscular junction (NMJ) is the activation of MuSK, a muscle-specific receptor tyrosine kinase (DeChiara et al., 1996). In mice lacking MuSK, motor axons fail to stop and differentiate, acetylcholine receptors (AChRs) fail to cluster, and AChR genes are expressed uniformly in muscle (DeChiara et al., 1996; Gautam et al., 1996). The retrograde signals for presynaptic differentiation are not known. Because synapse-specific transcription, like presynaptic differentiation, is MuSK-dependent, it is possible that retrograde signals for presynaptic differentiation might be encoded by genes that are expressed preferentially by synaptic nuclei. To identify such synapse-specific genes we screened Affymetrix microarrays with RNA from the dissected, synapse-enriched, and extrasynaptic regions of skeletal muscle and further studied those genes that encode for the secreted or cell-surface proteins
PMID: 17192615
ISSN: 0895-8696
CID: 72660