Searched for: school:SOM
Department/Unit:Cell Biology
Side-to-side differences in cortical bone mineral density of tibiae in young male athletes
Sone, Teruki; Imai, Yoshiyuki; Joo, Yong-In; Onodera, Sho; Tomomitsu, Tatsushi; Fukunaga, Masao
The importance of physical activity in the development and maintenance of bone mineral density (BMD) is widely accepted. However, the effects on cortical BMD have not been clarified in detail. The present study examined bilateral asymmetries in cortical BMD of the tibia using peripheral quantitative computed tomography. Subjects comprised 37 young male athletes and 57 controls (age range, 18-28 years). BMD and geometrical indices were determined in bilateral tibiae. Cortical and trabecular BMD were calculated at the diaphysis and distal metaphysis, respectively. Cortical width, periosteal cross-sectional area, and cross-sectional moment of inertia were calculated using tomographic data of the tibial diaphysis. In athletes, the non-dominant leg showed greater cortical BMD than the dominant leg (mean difference, 5.42%; P < 0.0001). Cortical width and moment of inertia were also greater in the non-dominant leg. Periosteal area displayed no significant difference between legs. The control group exhibited similar results except for cortical BMD. No differences in trabecular BMD were noted between legs in either athletes or controls. These results implies the existence of mechanisms for the mechanical adaptation of cortical BMD. Dominant leg is used for mobility or manipulation whereas the non-dominant leg contributes to support the actions of the dominant leg. Loading differences in bilateral legs in young athletes might affect the remodeling rate leading to the side-to-side differences in cortical BMD.
PMID: 16289987
ISSN: 8756-3282
CID: 2164152
Differential diagnosis of eosinophilic chronic rhinosinusitis
Sok, John C; Ferguson, Berrylin J
Eosinophilic chronic rhinosinusitis (ECRS) encompasses a wide variety of etiologies. To date, a unifying pathophysiologic mechanism remains elusive. Eosinophilia is frequently, but not exclusively, caused by immunoglobulin (Ig)E-mediated hypersensitivity and is dominated by the associated cytokine milieu of Th2 inflammation. The provisional subcategories of ECRS include superantigen-induced eosinophilic chronic rhinosinusitis, allergic fungal sinusitis, nonallergic fungal eosinophilic chronic rhinosinusitis, and aspirin-exacerbated eosinophilic chronic rhinosinusitis. Within each subcategory, recent findings supporting distinct mechanisms that promote eosinophilic infiltration are presented, and, therefore, targeted therapeutic interventions with specific antibacterial, antifungal, or immune modulation may be indicated.
PMID: 16579870
ISSN: 1529-7322
CID: 2199822
Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation
Pan, Yong; Bai, Chunyang Brian; Joyner, Alexandra L; Wang, Baolin
Gli2 and Gli3 are the primary transcription factors that mediate Sonic hedgehog (Shh) signals in the mouse. Gli3 mainly acts as a transcriptional repressor, because the majority of full-length Gli3 protein is proteolytically processed. Gli2 is mostly regarded as a transcriptional activator, even though it is also suggested to have a weak repressing activity. What the molecular basis for its possible dual function is and how its activity is regulated by Shh signaling are largely unknown. Here we demonstrate that unlike the results seen with Gli3 and Cubitus Interruptus, the fly homolog of Gli, only a minor fraction of Gli2 is proteolytically processed to form a transcriptional repressor in vivo and that in addition to being processed, Gli2 full-length protein is readily degraded. The degradation of Gli2 requires the phosphorylation of a cluster of numerous serine residues in its carboxyl terminus by protein kinase A and subsequently by casein kinase 1 and glycogen synthase kinase 3. The phosphorylated Gli2 interacts directly with betaTrCP in the SCF ubiquitin-ligase complex through two binding sites, which results in Gli2 ubiquitination and subsequent degradation by the proteasome. Both processing and degradation of Gli2 are suppressed by Shh signaling in vivo. Our findings provide the first demonstration of a molecular mechanism by which the Gli2 transcriptional activity is regulated by Shh signaling
PMCID:1447407
PMID: 16611981
ISSN: 0270-7306
CID: 96759
Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region
Blaess, Sandra; Corrales, Jomichelle D; Joyner, Alexandra L
The midbrain and anterior hindbrain offer an ideal system in which to study the coordination of tissue growth and patterning in three dimensions. Two organizers that control anteroposterior (AP) and dorsoventral (DV) development are known, and the regulation of AP patterning by Fgf8 has been studied in detail. Much less is known about the mechanisms that control mid/hindbrain development along the DV axis. Using a conditional mutagenesis approach, we have determined how the ventrally expressed morphogen sonic hedgehog (Shh) directs mid/hindbrain development over time and space through positive regulation of the Gli activators (GliA) and inhibition of the Gli3 repressor (Gli3R). We have discovered that Gli2A-mediated Shh signaling sequentially induces ventral neurons along the medial to lateral axis, and only before midgestation. Unlike in the spinal cord, Shh signaling plays a major role in patterning of dorsal structures (tectum and cerebellum). This function of Shh signaling involves inhibition of Gli3R and continues after midgestation. Gli3R levels also regulate overall growth of the mid/hindbrain region, and this largely involves the suppression of cell death. Furthermore, inhibition of Gli3R by Shh signaling is required to sustain expression of the AP organizer gene Fgf8. Thus, the precise spatial and temporal regulation of Gli2A and Gli3R by Shh is instrumental in coordinating mid/hindbrain development in three dimensions
PMID: 16571630
ISSN: 0950-1991
CID: 96760
The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation
Corrales, JoMichelle D; Blaess, Sandra; Mahoney, Eamonn M; Joyner, Alexandra L
Foliation of the mouse cerebellum occurs primarily during the first 2 weeks after birth and is accompanied by tremendous proliferation of granule cell precursors (GCPs). We have previously shown that sonic hedgehog (Shh) signaling correlates spatially and temporally with fissure formation, and that Gli2 is the main activator driving Shh induced proliferation of embryonic GCPs. Here, we have tested whether the level of Shh signaling regulates the extent of cerebellar foliation. By progressively lowering signaling by removing Gli1 and Gli2 or the Shh receptor smoothened, we found the extent of foliation is gradually reduced, and that this correlates with a decrease in the duration of GCP proliferation. Importantly, the pattern of the remaining fissures in the mutants corresponds to the first fissures that form during normal development. In a complementary manner, an increase in the level and length of Shh signaling results in formation of an extra fissure in a position conserved in rat. The complexity of cerebellar foliation varies greatly between vertebrate species. Our studies have uncovered a mechanism by which the level and length of Shh signaling could be integral to determining the distinct number of fissures in each species
PMID: 16571625
ISSN: 0950-1991
CID: 96761
Cellular and molecular mechanisms of tissue protection by lipophilic calcium channel blockers
Menne, Jan; Park, Joon-Keun; Agrawal, Rahul; Lindschau, Carsten; Kielstein, Jan T; Kirsch, Torsten; Marx, Axel; Muller, Dominik; Bahlmann, Ferdinand H; Meier, Matthias; Bode-Böger, Stefanie M; Haller, Hermann; Fliser, Danilo
Long-acting third-generation dihydropyridine calcium channel blockers (CCBs) improve endothelial dysfunction and prevent cardiovascular events in humans, but their cellular and molecular mechanisms of tissue protection are not elucidated in detail. We assessed organ (renal) protection by the highly lipophilic CCB lercanidipine in a double-transgenic rat (dTGR) model with overexpression of human renin and angiotensinogen genes. We randomly treated dTGR with lercanidipine (2.5 mg/kg/day; n=20) or vehicle (n=20) for 3 wk. Furthermore, we explored the influence of lercanidipine on protein kinase C (PKC) signaling in vivo and in vitro using endothelial and vascular smooth muscle cell cultures. Cumulative mortality was 60% in untreated dTGR, whereas none of the lercanidipine-treated animals died (P<0.001). We found significantly less albuminuria and improved renal function in lercanidipine-treated dTGR (both P<0.05). Lercanidipine treatment also significantly (P<0.05) reduced blood levels of the endogenous NOS inhibitor asymmetric dimethylarginine. On histological examination, we observed significantly less tissue inflammation and fibrosis in lercanidipine-treated animals (both P<0.05). Lercanidipine significantly inhibited angiotensin (ANG) I-mediated PKC-alpha and -delta activation in vivo and in vitro, partly due to reduced intracellular calcium flux. As a result, lercanidipine improved endothelial cell permeability in vitro. Lercanidipine prevents tissue injury and improves survival in a model of progressive organ damage. These effects may result, at least in part, from inhibition of tissue inflammation as well as improved NO bioavailability. Modulation of PKC activity may be an important underlying intracellular mechanism.
PMID: 16597674
ISSN: 1530-6860
CID: 4049342
Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors
Ehrlich, M; Woods, C B; Yu, M C; Dubeau, L; Yang, F; Campan, M; Weisenberger, D J; Long, Ti; Youn, B; Fiala, E S; Laird, P W
How hypermethylation and hypomethylation of different parts of the genome in cancer are related to each other and to DNA methyltransferase (DNMT) gene expression is ill defined. We used ovarian epithelial tumors of different malignant potential to look for associations between 5'-gene region or promoter hypermethylation, satellite, or global DNA hypomethylation, and RNA levels for ten DNMT isoforms. In the quantitative MethyLight assay, six of the 55 examined gene loci (LTB4R, MTHFR, CDH13, PGR, CDH1, and IGSF4) were significantly hypermethylated relative to the degree of malignancy (after adjustment for multiple comparisons; P < 0.001). Importantly, hypermethylation of these genes was associated with degree of malignancy independently of the association of satellite or global DNA hypomethylation with degree of malignancy. Cancer-related increases in methylation of only two studied genes, LTB4R and MTHFR, which were appreciably methylated even in control tissues, were associated with DNMT1 RNA levels. Cancer-linked satellite DNA hypomethylation was independent of RNA levels for all DNMT3B isoforms, despite the ICF syndrome-linked DNMT3B deficiency causing juxtacentromeric satellite DNA hypomethylation. Our results suggest that there is not a simple association of gene hypermethylation in cancer with altered DNMT RNA levels, and that this hypermethylation is neither the result nor the cause of satellite and global DNA hypomethylation.
PMCID:1449872
PMID: 16532039
ISSN: 0950-9232
CID: 3889182
Targeting translation in hypoxic tumors
Ron, David; Hinnebusch, Alan G
Recent insight into how mammalian cells adapt their translational machinery to hypoxic conditions raises the possibility of targeting components of the regulatory networks involved to selectively inhibit metabolically compromised tumor cells and possibly manipulate a broad range of other physiological processes
PMID: 17163661
ISSN: 1554-8937
CID: 70317
Ligand-dependent cleavage of the P75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons
Kenchappa, Rajappa S; Zampieri, Niccolo; Chao, Moses V; Barker, Philip A; Teng, Henry K; Hempstead, Barbara L; Carter, Bruce D
The p75 neurotrophin receptor regulates neuronal survival, promoting it in some contexts yet activating apoptosis in others. The mechanism by which the receptor elicits these differential effects is poorly understood. Here, we demonstrate that p75 is cleaved by gamma-secretase in sympathetic neurons, specifically in response to proapoptotic ligands. This cleavage resulted in ubiquitination and subsequent nuclear translocation of NRIF, a DNA binding protein essential for p75-mediated apoptosis. Inhibition of gamma-secretase or expression of a mutant p75 resistant to this protease prevented receptor proteolysis, blocked NRIF nuclear entry, and prevented apoptosis. In contrast, overexpression of the p75 ICD resulted in NRIF nuclear accumulation and apoptosis. The receptor proteolysis and NRIF nuclear localization were also observed in vivo during naturally occurring cell death in the superior cervical ganglia. These results indicate that p75-mediated apoptosis requires gamma-secretase dependent release of its ICD, which facilitates nuclear translocation of NRIF
PMID: 16630834
ISSN: 0896-6273
CID: 66609
Antiviral effect of the mammalian translation initiation factor 2alpha kinase GCN2 against RNA viruses
Berlanga, Juan J; Ventoso, Ivan; Harding, Heather P; Deng, Jing; Ron, David; Sonenberg, Nahum; Carrasco, Luis; de Haro, Cesar
In mammals, four different protein kinases, heme-regulated inhibitor, double-stranded RNA-dependent protein kinase (PKR), general control non-derepressible-2 (GCN2) and PKR-like endoplasmic reticulum kinase, regulate protein synthesis in response to environmental stresses by phosphorylating the alpha-subunit of the initiation factor 2 (eIF2alpha). We now report that mammalian GCN2 is specifically activated in vitro upon binding of two nonadjacent regions of the Sindbis virus (SV) genomic RNA to its histidyl-tRNA synthetase-related domain. Moreover, endogenous GCN2 is activated in cells upon SV infection. Strikingly, fibroblasts derived from GCN2-/- mice possess an increased permissiveness to SV or vesicular stomatitis virus infection. We further show that mice lacking GCN2 are extremely susceptible to intranasal SV infection, demonstrating high virus titers in the brain compared to similarly infected control animals. The overexpression of wild-type GCN2, but not the catalytically inactive GCN2-K618R variant, in NIH 3T3 cells impaired the replication of a number of RNA viruses. We determined that GCN2 inhibits SV replication by blocking early viral translation of genomic SV RNA. These findings point to a hitherto unrecognized role of GCN2 as an early mediator in the cellular response to RNA viruses
PMCID:1440839
PMID: 16601681
ISSN: 0261-4189
CID: 71597