Searched for: school:SOM
Department/Unit:Neuroscience Institute
Hopkins scientist tunes in to treat tuberculosis
Bloom, Stacie
PMCID:1297276
PMID: 16322772
ISSN: 0021-9738
CID: 1071512
Interaction between neocortical and hippocampal networks via slow oscillations
Sirota A; Buzsaki G
Both the thalamocortical and limbic systems generate a variety of brain state-dependent rhythms but the relationship between the oscillatory families is not well understood. Transfer of information across structures can be controlled by the offset oscillations. We suggest that slow oscillation of the neocortex, which was discovered by Mircea Steriade, temporally coordinates the self-organized oscillations in the neocortex, entorhinal cortex, subiculum and hippocampus. Transient coupling between rhythms can guide bidirectional information transfer among these structures and might serve to consolidate memory traces
PMCID:2180396
PMID: 18185848
ISSN: 1472-9288
CID: 148943
Differential expression of proteoglycans at central and peripheral nodes of Ranvier
Melendez-Vasquez, Carmen; Carey, David J; Zanazzi, George; Reizes, Ofer; Maurel, Patrice; Salzer, James L
The nodes of Ranvier are regularly spaced gaps between myelin sheaths that are markedly enriched in voltage-gated sodium channels and associated proteins. Myelinating glia play a key role in promoting node formation, although the requisite glial signals remain poorly understood. In this study, we have examined the expression of glial proteoglycans in the peripheral and central nodes. We report that the heparan sulfate proteoglycan, syndecan-3, becomes highly enriched with PNS node formation; its ligand, collagen V, is also concentrated at the PNS nodes and at lower levels along the abaxonal membrane. The V1 isoform of versican, a chondroitin sulfate proteoglycan, is also present in the nodal gap. By contrast, CNS nodes are enriched in versican isoform V2, but not syndecan-3. We have examined the molecular composition of the PNS nodes in syndecan-3 knockout mice. Nodal components are normally expressed in mice deficient in syndecan-3, suggesting that it has a nonessential role in the organization of nodes in the adult. These results indicate that the molecular composition and extracellular environment of the PNS and CNS nodes of Ranvier are significantly distinct
PMID: 16035076
ISSN: 0894-1491
CID: 61319
B(0) and B(1)-insensitive uniform T(1)-weighting for quantitative, first-pass myocardial perfusion magnetic resonance imaging
Kim, Daniel; Cernicanu, Alexandru; Axel, Leon
Myocardial perfusion can be estimated, in principle, from first-pass MR images by converting the T(1)-weighted signal-time curves to contrast agent concentration-time curves. Typically, T(1) weighting is achieved by saturating the magnetization with a nonselective radiofrequency (RF) pulse prior to the imaging sequence. The accuracy of the perfusion estimate derived from the single-point T(1)-weighted signal depends on the initial residual longitudinal magnetization (RLM) produced by the saturation pulse. In this study we demonstrate that single-shot, echo-planar imaging can be used to show initial RLM resulting from incomplete saturation due to static magnetic field and RF field inhomogeneities in the heart at 1.5 T. Three saturation pulses, single, composite simple, and composite B(1)-insensitive rotation (BIR-4) were evaluated in phantom and cardiac experiments. The RLM image was calculated by normalizing the saturated image by a proton-density-weighted image. Mean RLM produced by the three saturation pulses was significantly different in noncontrast cardiac imaging (RLM(single) = 0.108 +/- 0.078; RLM(composite) = 0.051 +/- 0.052; RLM(BIR-4) = 0.011 +/- 0.009; P < 0.001; n = 20). Using a BIR-4 pulse to perform saturation of magnetization seems promising for improving the effectiveness and uniformity of T(1) weighting for first-pass perfusion imaging
PMID: 16254944
ISSN: 0740-3194
CID: 66762
A novel model-based hearing compensation design using a gradient-free optimization method
Chen, Zhe; Becker, Suzanna; Bondy, Jeff; Bruce, Ian C; Haykin, Simon
We propose a novel model-based hearing compensation strategy and gradient-free optimization procedure for a learning-based hearing aid design. Motivated by physiological data and normal and impaired auditory nerve models, a hearing compensation strategy is cast as a neural coding problem, and a Neurocompensator is designed to compensate for the hearing loss and enhance the speech. With the goal of learning the Neurocompensator parameters, we use a gradient-free optimization procedure, an improved version of the ALOPEX that we have developed, to learn the unknown parameters of the Neurocompensator. We present our methodology, learning procedure, and experimental results in detail; discussion is also given regarding the unsupervised learning and optimization methods.
PMID: 16212766
ISSN: 0899-7667
CID: 2617632
Applications of Diffusion Tensor MR Imaging in Multiple Sclerosis
Ge, Yulin; Law, Meng; Grossman, Robert I
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that is the most common cause of nontraumatic disability in young adults in the United States. In recent years, magnetic resonance imaging (MRI) has been established as an important paraclinical tool in MS for the assessment of clinical diagnosis, natural history, and treatment effects. In MS studies, there are many advantages to having a sensitive and reliable in vivo method for investigating the specific pathological changes of white matter and its integrity during the disease process. As a consequence, in the past decade, the application of MRI to the study of MS has been explored from conventional MRI to new advanced quantitative techniques with greater pathological specificity and sensitivity. Diffusion tensor imaging (DTI) is one of the most promising techniques with regard to MS. It quantifies the amount of nonrandom water diffusion within tissues and provides unique in vivo information about the pathological processes that affect water diffusion as a result of brain microstructural damage. This review outlines the current state of the art and future direction of DTI and fiber tractography in the study of MS disease
PMID: 16394158
ISSN: 0077-8923
CID: 61244
Biosynthetic and biomimetic electrocyclizations
Beaudry, Christopher M; Malerich, Jeremiah P; Trauner, Dirk
PMID: 16351061
ISSN: 0009-2665
CID: 2485582
Magnetic resonance imaging in the management of pericardial disease
Srichai, Monvadi B; Axel, Leon
The pericardium, although seldom the primary cause of systemic illness, can be involved in almost every type of disease. Pericardial involvement may be subtle and escape detection unless specifically sought, or it can overshadow features of the underlying systemic disease. Suspected pericardial disease is usually initially evaluated with echocardiography. However, magnetic resonance imaging can offer additional valuable information. In addition to the excellent resolution and unlimited imaging planes available for visualization of the entire pericardial sac, the wide field of view allows for evaluation of involvement of adjacent cardiac structures. Dynamic functional imaging and tissue characterization with and without contrast can further characterize disease and provide information regarding concomitant myocardial disease and effects on cardiac motion. The treatment of specific pericardial conditions ultimately depends on the underlying disease process. Magnetic resonance imaging can provide useful information to aid in diagnosis, management, and guidance of therapy for pericardial disease
PMID: 16283972
ISSN: 1534-3189
CID: 133569
International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels
Gutman, George A; Chandy, K George; Grissmer, Stephan; Lazdunski, Michel; McKinnon, David; Pardo, Luis A; Robertson, Gail A; Rudy, Bernardo; Sanguinetti, Michael C; Stuhmer, Walter; Wang, Xiaoliang
PMID: 16382104
ISSN: 0031-6997
CID: 72706
Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging
Lu, Hanzhang; Law, Meng; Johnson, Glyn; Ge, Yulin; van Zijl, Peter C M; Helpern, Joseph A
Quantitative determination of cerebral blood volume (CBV) is important for understanding brain physiology and pathophysiology. In this work, a novel approach is presented for accurate measurement of absolute CBV (aCBV) using vascular-space-occupancy (VASO) MRI, a blood-nulling pulse sequence, in combination with the T(1) shortening property of Gd-DTPA. Two VASO images with identical imaging parameters are acquired before and after contrast agent injection, resulting in a subtracted image that reflects the amount of blood present in the brain, i.e., CBV. With an additional normalizing factor, aCBV in units of milliliters of blood per 100 mL of brain can be estimated. Experimental results at 1.5 and 3 T systems showed that aCBV maps with high spatial resolution can be obtained with high reproducibility. The averaged aCBV values in gray and white matter were 5.5 +/- 0.2 and 1.4 +/- 0.1 mL of blood/100 mL of brain, respectively. Compared to dynamic susceptibility contrast techniques, VASO MRI is based upon a relatively straightforward theory and the calculation of CBV does not require measurement of an arterial input function. In comparison with previous pre/postcontrast difference approaches, VASO MRI provides maximal signal difference between pre- and postcontrast situation and does not require the use of whole blood for signal normalization
PMID: 16254955
ISSN: 0740-3194
CID: 62393