Searched for: school:SOM
Department/Unit:Neuroscience Institute
Expression profiling in the aging brain: a perspective
Galvin, James E; Ginsberg, Stephen D
To evaluate molecular events associated with the aging process in animal models and human tissues, microarray analysis is performed at the regional and cellular levels to define transcriptional patterns or mosaics that may lead to better understanding of the mechanism(s) that drive senescence. In this review, we outline the experimental and analytical issues associated with high-throughput genomic analyses in aging brain and other tissues for a comprehensive evaluation of the current state of microarray analysis in aging paradigms. Ultimately, the goal of these studies is to apply functional genomics and proteomics approaches to aging research to develop new tools to assess age in cell- and tissue-specific manners in order to develop aging biomarkers for pharmacotherapeutic interventions and disease prevention
PMID: 16249125
ISSN: 1568-1637
CID: 110039
RNA amplification strategies for small sample populations
Ginsberg, Stephen D
Advances in high throughput cloning strategies have led to sequencing of the human genome as well as progress in the sequencing of the genome of several other species. Consequently, the field of molecular genetics is blossoming into a multidisciplinary entity that is revolutionizing the way researchers evaluate a myriad of critical concepts such as development, homeostasis, and disease pathogenesis. There is tremendous interest in the quantitative assessment of tissue-specific expression of both newly identified and well characterized specific genes and proteins. At present, an ideal approach is to assess gene expression in single elements recorded physiologically in living preparations or by immunocytochemical or histochemical methods in fixed cells in vitro or in vivo. The quantity of RNA harvested from individual cells is not sufficient for standard RNA extraction methods. Therefore, exponential polymerase-chain reaction based analyses, and linear RNA amplification including amplified antisense RNA amplification and a newly developed terminal continuation RNA amplification methodology have been developed for use in combination with microdissection procedures and cDNA/oligonucleotide microarray platforms. RNA amplification is a series of intricate procedures to amplify genetic signals from minute quantities of starting materials for microarray analysis and other downstream genetic methodologies. RNA amplification procedures effectively generate quantities of RNA through in vitro transcription. The present report illustrates practical usage of RNA amplification technologies within the context of regional, population cell, and single cell analyses in the brain
PMID: 16308152
ISSN: 1046-2023
CID: 60250
Synaptic plasticity and self-organization in the hippocampus [Comment]
Buzsaki, Gyorgy; Chrobak, James J
PMID: 16251975
ISSN: 1097-6256
CID: 148944
Rapid neurotransmitter uncaging in spatially defined patterns
Shoham, Shy; O'Connor, Daniel H; Sarkisov, Dmitry V; Wang, Samuel S-H
Light-sensitive 'caged' molecules provide a means of rapidly and noninvasively manipulating biochemical signals with submicron spatial resolution. Here we describe a new optical system for rapid uncaging in arbitrary patterns to emulate complex neural activity. This system uses TeO(2) acousto-optical deflectors to steer an ultraviolet beam rapidly and can uncage at over 20,000 locations per second. The uncaging beam is projected into the focal plane of a two-photon microscope, allowing us to combine patterned uncaging with imaging and electrophysiology. By photolyzing caged neurotransmitter in brain slices we can generate precise, complex activity patterns for dendritic integration. The method can also be used to activate many presynaptic neurons at once. Patterned uncaging opens new vistas in the study of signal integration and plasticity in neuronal circuits and other biological systems.
PMID: 16278654
ISSN: 1548-7091
CID: 1703892
Synaptic transmission at retinal ribbon synapses
Heidelberger, Ruth; Thoreson, Wallace B; Witkovsky, Paul
The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels
PMCID:1383430
PMID: 16027025
ISSN: 1350-9462
CID: 97079
The role of metabotropic glutamate receptors and cortical adaptation in habituation of odor-guided behavior
Yadon, Carly A; Wilson, Donald A
Decreases in behavioral investigation of novel stimuli over time may be mediated by a variety of factors including changes in attention, internal state, and motivation. Sensory cortical adaptation, a decrease in sensory cortical responsiveness over prolonged stimulation, may also play a role. In olfaction, metabotropic glutamate receptors on cortical afferent pre-synaptic terminals have been shown to underlie both cortical sensory adaptation and habituation of odor-evoked reflexes. The present experiment examined whether blockade of sensory cortical adaptation through bilateral infusion of the group III metabotropic glutamate receptor antagonist cyclopropyl-4-phosphonophenylglycine (CPPG) into the anterior piriform cortex could reduce habituation of a more complex odor-driven behavior such as investigation of a scented object or a conspecific. The results demonstrate that time spent investigating a scented jar, or a conspecific, decreases over the course of a continuous 10 minute trial. Acute infusion of CPPG bilaterally into the anterior piriform cortex significantly enhanced the time spent investigating the scented jar compared to investigation time in control rats, without affecting overall behavioral activity levels. Infusions into the brain outside of the piriform cortex were without effect. CPPG infusion into the piriform cortex also produced an enhancement of time spent investigating a conspecific, although this effect was not significant
PMCID:1356178
PMID: 16322361
ISSN: 1072-0502
CID: 94326
Characterization of the putative cholesterol transport protein mln64 in the brain [Meeting Abstract]
King, SR; Smith, AGA; Ginsberg, SD; Lamb, DJ
ORIGINAL:0008401
ISSN: 1683-5506
CID: 463372
Processing of spatial visual information along the pathway between the suprageniculate nucleus and the anterior ectosylvian cortex
Eordegh, Gabriella; Nagy, Attila; Berenyi, Antal; Benedek, Gyorgy
This study describes the visual information coding ability of single neurons in the suprageniculate nucleus (Sg), and provides new data concerning the visual information flow in the suprageniculate/anterior ectosylvian pathways of the feline brain. The visual receptive fields of the Sg neurons have an internal structure rather similar to that described earlier in the anterior ectosylvian visual area (AEV). The majority of the Sg units can provide information via their discharge rate at the site of the visual stimulus within their large receptive fields. This suggests that they may serve as panoramic localizers. The sites of maximum responsivity of the Sg neurons are distributed over the whole investigated part of the visual field. There is no significant difference between the distributions of spatial location of maximum sensitivity of the AEV and the Sg neurons. The mean visual response latency of the Sg units was found to be significantly shorter than the mean latency of the AEV neurons, but there was no difference between the shortest latency values of the thalamic and the cortical single-units. This suggests that the visual information flows predominantly from the Sg to the AEV, though the cortico-thalamic route is also active. The Sg seems to represent a thalamic nucleus rather similar in function to both the first-order relays and the higher-order thalamic nuclei. These results, together with the fact that the superior colliculus provides the common ascending source of information to the suprageniculate/anterior ectosylvian pathway, suggest a unique function of the AEV and the Sg in sensorimotor integration.
PMID: 16182935
ISSN: 0361-9230
CID: 722642
Photosensitized conversion of 9,10-deoxytridachione to photodeoxytridachione
Zuidema, Daniel R; Miller, Aubry K; Trauner, Dirk; Jones, Paul B
[reaction: see text] The photochemical conversion of 9,10-deoxytridachione to photodeoxytridachione has been photosensitized. The conversion was also quenched by piperylene. Photodeoxytridachione was produced in good yields under conditions in which only the cyclohexadiene group is sensitized. The results show that some, and perhaps all, of the photoreactions of 9,10-deoxytridachione occur through a triplet excited state. The mechanistic and biosynthetic implications of these results are discussed.
PMID: 16235932
ISSN: 1523-7060
CID: 2485602
Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion
Bao, Li; Avshalumov, Marat V; Rice, Margaret E
Mitochondrial dysfunction is a potential causal factor in Parkinson's disease. We show here that acute exposure to the mitochondrial complex I inhibitor rotenone (30-100 nM; 30 min) causes concentration-dependent suppression of single-pulse evoked dopamine (DA) release monitored in real time with carbon-fiber microelectrodes in guinea pig striatal slices, with no effect on DA content. Suppression of DA release was prevented by the sulfonylurea glibenclamide, implicating ATP-sensitive K+ (KATP) channels; however, tissue ATP was unaltered. Because KATP channels can be activated by hydrogen peroxide (H2O2), as well as by low ATP, we examined the involvement of rotenone-enhanced H2O2 generation. Confirming an essential role for H2O2, the inhibition of DA release by rotenone was prevented by catalase, a peroxide-scavenging enzyme. Striatal H2O2 generation during rotenone exposure was examined in individual medium spiny neurons using fluorescence imaging with dichlorofluorescein (DCF). An increase in intracellular H2O2 levels followed a similar time course to that of DA release suppression and was accompanied by cell membrane depolarization, decreased input resistance, and increased excitability. Extracellular catalase markedly attenuated the increase in DCF fluorescence and prevented rotenone-induced effects on membrane properties; membrane changes were also largely prevented by flufenamic acid, a blocker of transient receptor potential (TRP) channels. Thus, partial mitochondrial inhibition can cause functional DA denervation via H2O2 and KATP channels, without DA or ATP depletion. Furthermore, amplified H2O2 levels and TRP channel activation in striatal spiny neurons indicate potential sources of damage in these cells. Overall, these novel factors could contribute to parkinsonian motor deficits and neuronal degeneration caused by mitochondrial dysfunction
PMID: 16251452
ISSN: 1529-2401
CID: 59526