Searched for: school:SOM
Department/Unit:Cell Biology
Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts
Ebert, A M; Hume, G L; Warren, K S; Cook, N P; Burns, C G; Mohideen, M A; Siegal, G; Yelon, D; Fishman, M C; Garrity, D M
Calcium entry into myocytes drives contraction of the embryonic heart. To prepare for the next contraction, myocytes must extrude calcium from intracellular space via the Na+/Ca2+ exchanger (NCX1) or sequester it into the sarcoplasmic reticulum, via the sarcoplasmic reticulum Ca2+-ATPase2 (SERCA2). In mammals, defective calcium extrusion correlates with increased intracellular calcium levels and may be relevant to heart failure and sarcoplasmic dysfunction in adults. We report here that mutation of the cardiac-specific NCX1 (NCX1h) gene causes embryonic lethal cardiac arrhythmia in zebrafish tremblor (tre) embryos. The tre ventricle is nearly silent, whereas the atrium manifests a variety of arrhythmias including fibrillation. Calcium extrusion defects in tre mutants correlate with severe disruptions in sarcomere assembly, whereas mutations in the L-type calcium channel that abort calcium entry do not produce this phenotype. Knockdown of SERCA2 activity by morpholino-mediated translational inhibition or pharmacological inhibition causes embryonic lethality due to defects in cardiac contractility and morphology but, in contrast to tre mutation, does not produce arrhythmia. Analysis of intracellular calcium levels indicates that homozygous tre embryos develop calcium overload, which may contribute to the degeneration of cardiac function in this mutant. Thus, the inhibition of NCX1h versus SERCA2 activity differentially affects the pathophysiology of rhythm in the developing heart and suggests that relative levels of NCX1 and SERCA2 function are essential for normal development
PMCID:1308882
PMID: 16314582
ISSN: 0027-8424
CID: 68194
Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement
Liang, Feng-Xia; Bosland, Maarten C; Huang, Hongying; Romih, Rok; Baptiste, Solange; Deng, Fang-Ming; Wu, Xue-Ru; Shapiro, Ellen; Sun, Tung-Tien
Although the epithelial lining of much of the mammalian urinary tract is known simply as the urothelium, this epithelium can be divided into at least three lineages of renal pelvis/ureter, bladder/trigone, and proximal urethra based on their embryonic origin, uroplakin content, keratin expression pattern, in vitro growth potential, and propensity to keratinize during vitamin A deficiency. Moreover, these cells remain phenotypically distinct even after they have been serially passaged under identical culture conditions, thus ruling out local mesenchymal influence as the sole cause of their in vivo differences. During vitamin A deficiency, mouse urothelium form multiple keratinized foci in proximal urethra probably originating from scattered K14-positive basal cells, and the keratinized epithelium expands horizontally to replace the surrounding normal urothelium. These data suggest that the urothelium consists of multiple cell lineages, that trigone urothelium is closely related to the urothelium covering the rest of the bladder, and that lineage heterogeneity coupled with cell migration/replacement form the cellular basis for urothelial squamous metaplasia
PMCID:2171294
PMID: 16330712
ISSN: 0021-9525
CID: 59934
Rapid B cell receptor-induced unfolded protein response in nonsecretory B cells correlates with pro- versus antiapoptotic cell fate
Skalet, Alison H; Isler, Jennifer A; King, Leslie B; Harding, Heather P; Ron, David; Monroe, John G
The adaptive unfolded protein response (UPR) is essential for the development of antibody-secreting plasma cells. B cells induced by lipopolysaccharide (LPS) to differentiate into plasma cells exhibit a nonclassical UPR reported to anticipate endoplasmic reticulum stress prior to immunoglobulin production. Here we demonstrate that activation of a physiologic UPR is not limited to cells undergoing secretory cell differentiation. We identify B cell receptor (BCR) signaling as an unexpected physiologic UPR trigger and demonstrate that in mature B cells, BCR stimulation induces a short lived UPR similar to the LPS-triggered nonclassical UPR. However, unlike LPS, BCR stimulation does not induce plasma cell differentiation. Furthermore, the BCR-induced UPR is not limited to cells in which BCR induces activation, since a UPR is also induced in transitional immature B cells that respond to BCR stimulation with a rapid apoptotic fate. This response involves sustained up-regulation of Chop mRNA indicative of a terminal UPR. Whereas sustained Chop expression correlates with the ultimate fate of the BCR-triggered B cell and not its developmental stage, Chop-/- B cells undergo apoptosis, indicating that CHOP is not required for this process. These studies establish a system whereby a terminal or adaptive UPR can be alternatively triggered by physiologic stimuli
PMID: 16188879
ISSN: 0021-9258
CID: 71604
Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a "two-stroke engine"
Iizuka, Ryo; Yoshida, Takao; Ishii, Noriyuki; Zako, Tamotsu; Takahashi, Kazunobu; Maki, Kosuke; Inobe, Tomonao; Kuwajima, Kunihiro; Yohda, Masafumi
Group II chaperonins, found in Archaea and in the eukaryotic cytosol, act independently of a cofactor corresponding to GroES of group I chaperonins. Instead, the helical protrusion at the tip of the apical domain forms a built-in lid of the central cavity. Although many studies on the lid's conformation have been carried out, the conformation in each step of the ATPase cycle remains obscure. To clarify this issue, we examined the effects of ADP-aluminum fluoride (AlFx) and ADP-beryllium fluoride (BeFx) complexes on alpha-chaperonin from the hyperthermophilic archaeum, Thermococcus sp. strain KS-1. Biochemical assays, electron microscopic observations, and small angle x-ray scattering measurements demonstrate that alpha-chaperonin incubated with ADP and BeFx exists in an asymmetric conformation; one ring is open, and the other is closed. The result indicates that alpha-chaperonin also shares the inherent functional asymmetry of bacterial and eukaryotic cytosolic chaperonins. Most interestingly, addition of ADP and BeFx induced alpha-chaperonin to encapsulate unfolded proteins in the closed ring but did not trigger their folding. Moreover, alpha-chaperonin incubated with ATP and AlFx or BeFx adopted a symmetric closed conformation, and its functional turnover was inhibited. These forms are supposed to be intermediates during the reaction cycle of group II chaperonins.
PMID: 16183634
ISSN: 0021-9258
CID: 2982082
Semi-algebraic constant reset hybrid automata - SACoRe
Chapter by: Casagrande, Alberto; Piazza, Carla; Mishra, Bud
in: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05 by
[S.l.] : Springer Verlagservice@springer.de, 2005
pp. 678-683
ISBN: 9780780395688
CID: 2852202
Whole-body insulin resistance in the absence of obesity in FVB mice with overexpression of Dgat1 in adipose tissue
Chen, Nancy; Liu, Li; Zhang, Yiying; Ginsberg, Henry N; Yu, Yi-Hao
Insulin resistance is often associated with obesity. We tested whether augmentation of triglyceride synthesis in adipose tissue by transgenic overexpression of the diacylglycerol aclytransferase-1 (Dgat1) gene causes obesity and/or alters insulin sensitivity. Male FVB mice expressing the aP2-Dgat1 had threefold more Dgat1 mRNA and twofold greater DGAT activity levels in adipose tissue. After 30 weeks of age, these mice had hyperglycemia, hyperinsulinemia, and glucose intolerance on a high-fat diet but were not more obese than wild-type littermates. Compared with control littermates, Dgat1 transgenic mice were both insulin and leptin resistant and had markedly elevated plasma free fatty acid levels. Adipocytes from Dgat1 transgenic mice displayed increased basal and isoproterenol-stimulated lipolysis rates and decreased gene expression for fatty acid uptake. Muscle triglyceride content was unaffected, but liver mass and triglyceride content were increased by 20 and 300%, respectively. Hepatic insulin signaling was suppressed, as evidenced by decreased phosphorylation of insulin receptor-beta (Tyr(1,131)/Tyr(1,146)) and protein kinase B (Ser473). Gene expression data suggest that the gluconeogenic enzymes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, were upregulated. Thus, adipose overexpression of Dgat1 gene in FVB mice leads to diet-inducible insulin resistance, which is secondary to redistribution of fat from adipose tissue to the liver in the absence of obesity.
PMID: 16306352
ISSN: 0012-1797
CID: 762362
The crystal structure of Rv0793, a hypothetical monooxygenase from M. tuberculosis
Lemieux, M Joanne; Ference, Claire; Cherney, Maia M; Wang, Metian; Garen, Craig; James, Michael N G
Mycobacterium tuberculosis infects millions worldwide. The Structural Genomics Consortium for M. tuberculosis has targeted all genes from this bacterium in hopes of discovering and developing new therapeutic agents. Open reading frame Rv0793 from M. tuberculosis was annotated with an unknown function. The 3-dimensional structure of Rv0793 has been solved to 1.6 A resolution. Its structure is very similar to that of Streptomyces coelicolor ActVA-Orf6, a monooxygenase that participates in tailoring of polyketide antibiotics in the absence of a cofactor. It is also similar to the recently solved structure of YgiN, a quinol monooxygenase from Escherichia coli. In addition, the structure of Rv0793 is similar to several structures of other proteins with unknown function. These latter structures have been determined recently as a result of structural genomic projects for various bacterial species. In M. tuberculosis, Rv0793 and its homologs may represent a class of monooygenases acting as reactive oxygen species scavengers that are essential for evading host defenses. Since the most prevalent mode of attack by the host defense on M. tuberculosis is by reactive oxygen species and reactive nitrogen species, Rv0793 may provide a novel target to combat infection by M. tuberculosis.
PMID: 16496224
ISSN: 1345-711x
CID: 2286762
Bioactive small molecules reveal antagonism between the integrated stress response and sterol-regulated gene expression
Harding, Heather P; Zhang, Yuhong; Khersonsky, Sonya; Marciniak, Stefan; Scheuner, Donalyn; Kaufman, Randal J; Javitt, Norman; Chang, Young-Tae; Ron, David
Phosphorylation of translation initiation factor 2alpha (eIF2alpha) coordinates a translational and transcriptional program known as the integrated stress response (ISR), which adapts cells to endoplasmic reticulum (ER) stress. A screen for small molecule activators of the ISR identified two related compounds that also activated sterol-regulated genes by blocking cholesterol biosynthesis at the level of CYP51. Ketoconazole, a known CYP51 inhibitor, had similar effects, establishing that perturbed flux of precursors to cholesterol activates the ISR. Surprisingly, compound-mediated activation of sterol-regulated genes was enhanced in cells with an ISR-blocking mutation in the regulatory phosphorylation site of eIF2alpha. Furthermore, induction of the ISR by an artificial drug-activated eIF2alpha kinase reduced the level of active sterol regulatory element binding protein (SREBP) and sterol-regulated mRNAs. These findings suggest a mechanism by which interactions between sterol metabolism, the ISR, and the SREBP pathway affect lipid metabolism during ER stress
PMCID:1361344
PMID: 16330322
ISSN: 1550-4131
CID: 71601
Particle picking by segmentation: a comparative study with SPIDER-based manual particle picking
Adiga, Umesh; Baxter, William T; Hall, Richard J; Rockel, Beate; Rath, Bimal K; Frank, Joachim; Glaeser, Robert
Boxing hundreds of thousands of particles in low-dose electron micrographs is one of the major bottle-necks in advancing toward achieving atomic resolution reconstructions of biological macromolecules. We have shown that a combination of pre-processing operations and segmentation can be used as an effective, automatic tool for identifying and boxing single-particle images. This paper provides a brief description of how this method has been applied to a large data set of micrographs of ice-embedded ribosomes, including a comparative analysis of the efficiency of the method. Some results on processing micrographs of tripeptidyl peptidase II particles are also shown. In both cases, we have achieved our goal of selecting at least 80% of the particles that an expert would select with less than 10% false positives
PMID: 16330229
ISSN: 1047-8477
CID: 66305
Differential expression of proteoglycans at central and peripheral nodes of Ranvier
Melendez-Vasquez, Carmen; Carey, David J; Zanazzi, George; Reizes, Ofer; Maurel, Patrice; Salzer, James L
The nodes of Ranvier are regularly spaced gaps between myelin sheaths that are markedly enriched in voltage-gated sodium channels and associated proteins. Myelinating glia play a key role in promoting node formation, although the requisite glial signals remain poorly understood. In this study, we have examined the expression of glial proteoglycans in the peripheral and central nodes. We report that the heparan sulfate proteoglycan, syndecan-3, becomes highly enriched with PNS node formation; its ligand, collagen V, is also concentrated at the PNS nodes and at lower levels along the abaxonal membrane. The V1 isoform of versican, a chondroitin sulfate proteoglycan, is also present in the nodal gap. By contrast, CNS nodes are enriched in versican isoform V2, but not syndecan-3. We have examined the molecular composition of the PNS nodes in syndecan-3 knockout mice. Nodal components are normally expressed in mice deficient in syndecan-3, suggesting that it has a nonessential role in the organization of nodes in the adult. These results indicate that the molecular composition and extracellular environment of the PNS and CNS nodes of Ranvier are significantly distinct
PMID: 16035076
ISSN: 0894-1491
CID: 61319