Searched for: school:SOM
Department/Unit:Cell Biology
Ouabain Enhances Gap Junctional Intercellular Communication by Inducing Paracrine Secretion of Prostaglandin E2
Ogazon Del Toro, Alejandro; Jimenez, Lidia; Serrano Rubi, Mauricio; Cereijido, Marcelino; Ponce, Arturo
Ouabain is a cardiac glycoside that has been described as a hormone, with interesting effects on epithelial physiology. We have shown previously that ouabain induces gap junctional intercellular communication (GJIC) in wild, sensitive cells (MDCK-S), but not in cells that have become insensitive (MDCK-I) by modifying their Na+-K+-ATPase. We have also demonstrated that prostaglandin E2 (PGE2) is able to induce increased GJIC by a mechanism other than ouabain, that does not depend on Na+-K+-ATPase. In this work we show, by dye transfer assays, that when MDCK-S and MDCK-I are randomly mixed, to form monolayers, the latter stablish GJIC, because of stimulation by a compound released to the extracellular media, by MDCK-S cells, after treatment with ouabain, as evidenced by the fact that monolayers of only MDCK-I cells, treated with a conditioned medium (CM) that is obtained after incubation of MDCK-S monolayers with ouabain, significantly increase their GJIC. The further finding that either (1) pre-treatment with COX-2 inhibitors or (2) addition to CM of antagonists of EP2 receptor abolish CM's ability to induce GJIC in MDCK-I monolayers indicate that PGE2 is the GJIC-inducing compound. Therefore, these results indicate that, in addition to direct stimulation, mediated by Na+-K+-ATPase, ouabain enhances GJIC indirectly through the paracrine production of PGE2.
PMID: 34200582
ISSN: 1422-0067
CID: 4926962
β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis
Cero, Cheryl; Lea, Hannah J; Zhu, Kenneth Y; Shamsi, Farnaz; Tseng, Yu-Hua; Cypess, Aaron M
β3-Adrenergic receptors (β3-ARs) are the predominant regulators of rodent brown adipose tissue (BAT) thermogenesis. However, in humans, the physiological relevance of BAT and β3-AR remains controversial. Herein, using primary human adipocytes from supraclavicular neck fat and immortalized brown/beige adipocytes from deep neck fat from 2 subjects, we demonstrate that the β3-AR plays a critical role in regulating lipolysis, glycolysis, and thermogenesis. Silencing of the β3-AR compromised genes essential for thermogenesis, fatty acid metabolism, and mitochondrial mass. Functionally, reduction of β3-AR lowered agonist-mediated increases in intracellular cAMP, lipolysis, and lipolysis-activated, uncoupling protein 1-mediated thermogenic capacity. Furthermore, mirabegron, a selective human β3-AR agonist, stimulated BAT lipolysis and thermogenesis, and both processes were lost after silencing β3-AR expression. This study highlights that β3-ARs in human brown/beige adipocytes are required to maintain multiple components of the lipolytic and thermogenic cellular machinery and that β3-AR agonists could be used to achieve metabolic benefit in humans.
PMCID:8262278
PMID: 34100382
ISSN: 2379-3708
CID: 5150592
Alternative splicing is a developmental switch for hTERT expression
Penev, Alex; Bazley, Andrew; Shen, Michael; Boeke, Jef D; Savage, Sharon A; Sfeir, Agnel
Telomere length control is critical for cellular lifespan and tumor suppression. Telomerase is transiently activated in the inner cell mass of the developing blastocyst to reset telomere reserves. Its silencing upon differentiation leads to gradual telomere shortening in somatic cells. Here, we report that transcriptional regulation through cis-regulatory elements only partially accounts for telomerase activation in pluripotent cells. Instead, developmental control of telomerase is primarily driven by an alternative splicing event, centered around hTERT exon 2. Skipping of exon 2 triggers hTERT mRNA decay in differentiated cells, and conversely, its retention promotes telomerase accumulation in pluripotent cells. We identify SON as a regulator of exon 2 alternative splicing and report a patient carrying a SON mutation and suffering from insufficient telomerase and short telomeres. In summary, our study highlights a critical role for hTERT alternative splicing in the developmental regulation of telomerase and implicates defective splicing in telomere biology disorders.
PMID: 33852895
ISSN: 1097-4164
CID: 4846132
Structural and functional remodeling of the female Apoe-/- mouse aorta due to chronic cigarette smoke exposure
Farra, Yasmeen M; Matz, Jacqueline; Ramkhelawon, Bhama; Oakes, Jessica M; Bellini, Chiara
Despite a decline in popularity over the last several decades, cigarette smoking remains a leading cause of cardiovascular morbidity and mortality. Yet, the effects of cigarette smoking on vascular structure and function are largely unknown. To evaluate changes in the mechanical properties of the aorta that occur with chronic smoking, we exposed female Apolipoprotein E-deficient mice to mainstream cigarette smoke daily for 24 weeks, with room air as control. By the time of sacrifice, cigarette-exposed mice had lower body mass, but experienced larger systolic/diastolic blood pressure when compared to controls. Smoking was associated with significant wall thickening, reduced axial stretch, and circumferential material softening of the aorta. While this contributed to maintaining intrinsic tissue stiffness at control levels despite larger pressure loads, the structural stiffness became significantly larger. Furthermore, the aorta from cigarette-exposed mice exhibited decreased ability to store elastic energy and augment diastolic blood flow. Histological analysis revealed a region-dependent increase in the cross-sectional area due to smoking. Increased smooth muscle and extracellular matrix content led to medial thickening in the ascending aorta, while collagen deposition increased the thickness of the descending thoracic and abdominal aorta. Atherosclerotic lesions were larger in exposed vessels and featured a necrotic core overlaid by a thinned fibrous cap and macrophage infiltration, consistent with a vulnerable phenotype. Collectively, our data indicate that cigarette smoking decreases the mechanical functionality of the aorta, inflicts morphometric alterations to distinct segments of the aorta, and accelerates the progression of atherosclerosis.
PMID: 33834870
ISSN: 1522-1539
CID: 4839642
Neural cell adhesion molecule is required for ventricular conduction system development
Delgado, Camila; Bu, Lei; Zhang, Jie; Liu, Fang-Yu; Sall, Joseph; Liang, Feng-Xia; Furley, Andrew J; Fishman, Glenn I
The most distal portion of the ventricular conduction system (VCS) contains cardiac Purkinje cells (PCs), which are essential for synchronous activation of the ventricular myocardium. Contactin-2 (CNTN2), a member of the immunoglobulin superfamily of cell adhesion molecules (IgSF-CAMs), was previously identified as a marker of the VCS. Through differential transcriptional profiling, we discovered two additional highly enriched IgSF-CAMs in the VCS: NCAM-1 and ALCAM. Immunofluorescence staining showed dynamic expression patterns for each IgSF-CAM during embryonic and early postnatal stages, but ultimately all three proteins became highly enriched in mature PCs. Mice deficient in NCAM-1, but not CNTN2 or ALCAM, exhibited defects in PC gene expression and VCS patterning, as well as cardiac conduction disease. Moreover, using ST8sia2 and ST8sia4 knockout mice, we show that inhibition of post-translational modification of NCAM-1 by polysialic acid leads to disrupted trafficking of sarcolemmal intercalated disc proteins to junctional membranes and abnormal expansion of the extracellular space between apposing PCs. Taken together, our data provide insights into the complex developmental biology of the ventricular conduction system.
PMID: 34100064
ISSN: 1477-9129
CID: 4899742
Synthetic bone tissue engineering graft substitutes: What is the future?
Valtanen, Rosa S; Yang, Yunzhi P; Gurtner, Geoffrey C; Maloney, William J; Lowenberg, David W
The management of large segmental bone defects caused by trauma or disease remains clinically challenging within orthopaedics. The major impediment to bone healing with current treatment options is insufficient vascularization and incorporation of graft material. Lack of rapid adequate vascularization leads to cellular necrosis within the inner regions of the implanted material and a failure of bone regeneration. Current treatment options for critical size bone defects include the continued "gold standard" autograft, allograft, synthetic bone graft substitutes, vascularized fibular graft, induced membrane technique, and distraction osteogenesis. Bone tissue engineering (BTE) remains an exciting prospect for the treatment of large segmental bone defects; however, current clinical integration of engineered scaffolds remains low. We believe that the barrier to clinical application of bone tissue engineering constructs lies in the lack of concomitant vascularization of these scaffolds. This mini-review outlines the progress made and the significant limitations remaining in successful clinical incorporation or engineered synthetic bone substitutes for segmental defects.
PMID: 32732118
ISSN: 1879-0267
CID: 4541022
Biologic Association Annual Summit: 2020 Report
Frank, Rachel M; Sherman, Seth L; Chahla, Jorge; Dragoo, Jason L; Mandelbaum, Bert; Anz, Adam W; Bradley, James P; Chu, Constance R; Cole, Brian J; Farr, Jack; Flanigan, David C; Gomoll, Andreas H; Halbrecht, Joanne; Horsch, Kay; Lattermann, Christian; Leucht, Philipp; Maloney, William J; McIntyre, Louis F; Murray, Iain; Muschler, George F; Nakamura, Norimasa; Piuzzi, Nicolas S; Rodeo, Scott A; Saris, Daniel B F; Shaffer, William O; Shapiro, Shane A; Spindler, Kurt P; Steinwachs, Matthias; Tokish, John M; Vangsness, C Thomas; Watson, John Tracy; Yanke, Adam B; Zaslav, Kenneth R
Interest and research in biologic approaches for tissue healing are exponentially growing for a variety of musculoskeletal conditions. The recent hype concerning musculoskeletal biological therapies (including viscosupplementation, platelet-rich plasma, and cellular therapies, or "stem cells") is driven by several factors, including demand by patients promising regenerative evidence supported by substantial basic and translational work, as well as commercial endeavors that complicate the scientific and lay understanding of biological therapy outcomes. While significant improvements have been made in the field, further basic and preclinical research and well-designed randomized clinical trials are needed to better elucidate the optimal indications, processing techniques, delivery, and outcome assessment. Furthermore, biologic treatments may have potential devastating complications when proper methods or techniques are ignored. For these reasons, an association comprising several scientific societies, named the Biologic Association (BA), was created to foster coordinated efforts and speak with a unified voice, advocating for the responsible use of biologics in the musculoskeletal environment in clinical practice, spearheading the development of standards for treatment and outcomes assessment, and reporting on the safety and efficacy of biologic interventions. This article will introduce the BA and its purpose, provide a summary of the 2020 first annual Biologic Association Summit, and outline the future strategic plan for the BA.
PMCID:8191082
PMID: 34164559
ISSN: 2325-9671
CID: 4918582
Adipose-derived stromal cells seeded in pullulan-collagen hydrogels improve healing in murine burns
Barrera, Janos; Trotsyuk, Artem; Maan, Zeshaan N; Bonham, Clark A; Larson, Madelyn R; Mittermiller, Paul A; Henn, Dominic; Chen, Kellen; Mays, Chyna J; Mittal, Smiti; Mermin-Bunnell, Alana M; Sivaraj, Dharshan; Jing, Serena; Rodrigues, Melanie; Kwon, Sun Hyung; Noishiki, Chikage; Padmanabhan, Jagannath; Jiang, Yuanwen; Niu, Simiao; Inayathullah, Mohammed; Rajadas, Jayakumar; Januszyk, Michael; Gurtner, Geoffrey C
Burn scars and scar contractures cause significant morbidity for patients. Recently, cell-based therapies have been proposed as an option for improving healing and reducing scarring after burn injury, through their known pro-angiogenic and immunomodulatory paracrine effects. Our lab has developed a pullulan-collagen hydrogel that, when seeded with mesenchymal stem cells (MSCs), improves cell viability and augments their pro-angiogenic capacity in vivo. Concurrently, recent research suggests that prospective isolation of cell subpopulations with desirable transcriptional profiles can be used to further improve cell-based therapies. In this study, we examined whether adipose-derived stem cell-seeded hydrogels could improve wound healing following thermal injury using a murine contact burn model. Partial thickness contact burns were created on the dorsum of mice. On days 5 and 10 following injury, burns were debrided and received either ASC-hydrogel, ASC injection alone, hydrogel alone, or no treatment. On days 10 and 25, burns were harvested for histologic and molecular analysis. This experiment was repeated using CD26+/CD55+ FACS-enriched ASCs to further evaluate the regenerative potential of ASCs in wound healing. ASC-hydrogel-treated burns demonstrated accelerated time to re-epithelialization, greater vascularity, and increased expression of the pro-angiogenic genes MCP-1, VEGF, and SDF-1 at both the mRNA and protein level. Expression of the pro-fibrotic gene Timp1 and pro-inflammatory gene Tnfa were down-regulated in ASC-hydrogel treated burns. ASC-hydrogel treated burns exhibited reduced scar area compared to hydrogel-treated and control wounds, with equivalent scar density. CD26+/CD55+ ASC-hydrogel treatment resulted in accelerated healing, increased dermal appendage count, and improved scar quality with a more reticular collagen pattern. Here we find that ASC-hydrogel therapy is effective for treating burns, with demonstrated pro-angiogenic, fibro-modulatory and immunomodulatory effects. Enrichment for CD26+/CD55+ ASCs has additive benefits for tissue architecture and collagen remodeling post-burn injury. Research is ongoing to further facilitate clinical translation of this promising therapeutic approach.
PMID: 33789446
ISSN: 1937-335x
CID: 4830912
Genetic variation of staphylococcal LukAB toxin determines receptor tropism
Perelman, Sofya S; James, David B A; Boguslawski, Kristina M; Nelson, Chase W; Ilmain, Juliana K; Zwack, Erin E; Prescott, Rachel A; Mohamed, Adil; Tam, Kayan; Chan, Rita; Narechania, Apurva; Pawline, Miranda B; Vozhilla, Nikollaq; Moustafa, Ahmed M; Kim, Sang Y; Dittmann, Meike; Ekiert, Damian C; Bhabha, Gira; Shopsin, Bo; Planet, Paul J; Koralov, Sergei B; Torres, Victor J
Staphylococcus aureus has evolved into diverse lineages, known as clonal complexes (CCs), which exhibit differences in the coding sequences of core virulence factors. Whether these alterations affect functionality is poorly understood. Here, we studied the highly polymorphic pore-forming toxin LukAB. We discovered that the LukAB toxin variants produced by S. aureus CC30 and CC45 kill human phagocytes regardless of whether CD11b, the previously established LukAB receptor, is present, and instead target the human hydrogen voltage-gated channel 1 (HVCN1). Biochemical studies identified the domain within human HVCN1 that drives LukAB species specificity, enabling the generation of humanized HVCN1 mice with enhanced susceptibility to CC30 LukAB and to bloodstream infection caused by CC30 S. aureus strains. Together, this work advances our understanding of an important S. aureus toxin and underscores the importance of considering genetic variation in characterizing virulence factors and understanding the tug of war between pathogens and the host.
PMID: 33875847
ISSN: 2058-5276
CID: 4846982
The demographics and outcomes in patients with bilateral distal radius fractures
Gonzalez, Matthew; Rahman, Ayesha; Leucht, Philipp; Tejwani, Nirmal
Although distal radius fractures are quite common, bilateral distal radius fractures seldomly occur. Due to this, treatment is primarily based on surgeon experience with unilateral fractures, however bi- lateral fractures add a level of complexity : loss of functional independence. The purpose of this study was to examine a cohort of patients with bilateral distal radius fractures to identify differences in demographics, mechanism of injury, and outcomes to further our understanding of these rare injuries. 23 patients were identified retrospectively over a 5-year period that met inclusion criteria. The medical records were reviewed with multiple demographic and clinical parameters recorded and analyzed. Males were more likely to sustain high-energy mechanisms (80% vs. 53%). Patients <50 years old were more likely to sustain high-energy mechanisms (90% vs. 46%) and were more likely to be treated operatively (80% vs. 62%). The most commonly associated injury was a head injury (30%). All patients treated non-operatively reported minimal/no pain upon final follow-up where 57% of patients treated operatively noted regular pain. 75% of patients with medical comorbidities had minimal/no pain upon final follow- up. Conclusions : Patients with bilateral fractures were more likely to be younger males who suffered from higher energy mechanisms. Age was a critical factor in determining treatment strategy. Rates of associated head injuries were elevated, which is an important factor for the clinician to keep in mind when treating this population. As we further our understanding of this unique population, we can improve our treatment approaches and subsequently attain better outcomes.
PMID: 34529373
ISSN: 0001-6462
CID: 5061362