Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14105


Algorithmic algebraic model checking I: Challenges from systems biology [Meeting Abstract]

Piazza, C; Antoniotti, M; Mysore, V; Policriti, A; Winkler, F; Mishra, B
In this paper, we suggest a possible confluence of the theory of hybrid automata and the techniques of algorithmic algebra to create a computational basis for systems biology. We describe a method to compute bounded reachability by combining Taylor polynomials and cylindric algebraic decomposition algorithms. We discuss the power and limitations of the framework we propose and we suggest several possible extensions. We briefly show an application to the study of the Delta-Notch protein signaling system in biology
ISI:000230755800003
ISSN: 0302-9743
CID: 57808

Human origins of DNA replication selected from a library of nascent DNA

Todorovic, Vesna; Giadrossi, Sara; Pelizon, Cristina; Mendoza-Maldonado, Ramiro; Masai, Hisao; Giacca, Mauro
The identification of metazoan origins of DNA replication has so far been hampered by the lack of a suitable genetic screening and by the cumbersomeness of the currently available mapping procedures. Here we describe the construction of a library of nascent DNA, representative of all cellular origin sequences, and its utilization as a screening probe for origin identification in large genomic regions. The procedure developed was successfully applied to the human 5q31.1 locus, encoding for the IL-3 and GM-CSF genes. Two novel origins were identified and subsequently characterized by competitive PCR mapping, located approximately 3.5 kb downstream of the GM-CSF gene. The two origins (GM-CSF Ori1 and Ori2) were shown to interact with different members of the DNA prereplication complex. This observation reinforces the universal paradigm that initiation of DNA replication takes place at, or in close proximity to, the binding sites of the trans-acting initiator proteins
PMID: 16109380
ISSN: 1097-2765
CID: 67922

Asynchronous extinction of late Quaternary sloths on continents and islands

Steadman, David W; Martin, Paul S; MacPhee, Ross D E; Jull, A J T; McDonald, H Gregory; Woods, Charles A; Iturralde-Vinent, Manuel; Hodgins, Gregory W L
Whatever the cause, it is extraordinary that dozens of genera of large mammals became extinct during the late Quaternary throughout the Western Hemisphere, including 90% of the genera of the xenarthran suborder Phyllophaga (sloths). Radiocarbon dates directly on dung, bones, or other tissue of extinct sloths place their 'last appearance' datum at approximately 11,000 radiocarbon years before present (yr BP) or slightly less in North America, approximately 10,500 yr BP in South America, and approximately 4,400 yr BP on West Indian islands. This asynchronous situation is not compatible with glacial-interglacial climate change forcing these extinctions, especially given the great elevational, latitudinal, and longitudinal variation of the sloth-bearing continental sites. Instead, the chronology of last appearance of extinct sloths, whether on continents or islands, more closely tracks the first arrival of people
PMCID:1187974
PMID: 16085711
ISSN: 0027-8424
CID: 129244

Gene profiling of cells expressing different FGF-2 forms

Quarto, Natalina; Fong, Kenton D; Longaker, Michael T
Fibroblast Growth Factor-2 (FGF-2) induces cell proliferation, cell migration, embryonic development, cell differentiation, angiogenesis and malignant transformation. The four forms of FGF-2 (Low Molecular Weight) and (High Molecular Weights) are alternative translation products, and have a different subcellular localization: the high molecular weight (HMWFGF-2) forms are nuclear while the low molecular weight form, (LMWFGF-2) is mainly cytoplasmic. Our previous work demonstrated NIH 3T3 cells expressing different FGF-2 forms, displayed a different phenotype, suggesting that nuclear and cytoplasmic forms of FGF-2 may have different functions. Here we report a cDNA microarray-based study in NIH 3T3 fibroblasts expressing different FGF-2 forms. Several candidate genes that affect cell-cycle, tumor suppression, adhesion and transcription were identified as possible mediators of the HMWFGF-2 phenotype and signaling pattern. These results demonstrated that HMWFGF-2 and LMWFGF-2 target the expression of different genes. Particularly, our data suggest that HMWFGF-2 forms may function as inducers of growth inhibition and tumor suppression activities.
PMID: 16023796
ISSN: 0378-1119
CID: 1217782

Binding of 10-N-nonyl acridine orange to cardiolipin-deficient yeast cells: implications for assay of cardiolipin

Gohil, Vishal M; Gvozdenovic-Jeremic, Jelena; Schlame, Michael; Greenberg, Miriam L
PMID: 15963941
ISSN: 0003-2697
CID: 72031

WTH3, which encodes a small G protein, is differentially regulated in multidrug-resistant and sensitive MCF7 cells

Tian, Kegui; Jurukovski, Vladimir; Yuan, Liming; Shan, Jidong; Xu, Haopeng
The WTH3 gene's biological characteristics and relationship to multidrug resistance (MDR) were investigated further. Results showed that WTH3 was mainly located in the cytosol and capable of binding to GTP. In addition, WTH3's promoter function was significantly attenuated in MDR (MFC7/AdrR) relative to non-MDR (MCF7/WT) cells. Advanced analyses indicated that two mechanisms could be involved in WTH3's down-regulation: DNA methylation and trans-element modulations. It was found that the 5' end portion of a CpG island in WTH3's promoter was hypermethylated in MCF7/AdrR but not MCF7/WT cells, which could have a negative effect on the WTH3 promoter. This idea was supported by the observation that a 45-bp sequence (DMR45) in this differentially methylated region positively influenced promoter activity. We also discovered that different nuclear proteins in MCF7/AdrR and MCF7/WT cells bound to methylated or nonmethylated DMR45. Moreover, a sequence containing a unique repeat that was also a positive cis-element for the promoter was attached by different transcription factors depending on whether they were prepared from MCF7/AdrR or MCF7/WT cells. These molecular changes, apparently induced by drug treatment, resulted in WTH3's down regulation in MDR cells. Therefore, present studies support previous observations that WTH3, as a negative regulator, participates in MDR development in MCF7/AdrR cells.
PMID: 16103095
ISSN: 0008-5472
CID: 2503242

TAZ, a transcriptional modulator of mesenchymal stem cell differentiation

Hong, Jeong-Ho; Hwang, Eun Sook; McManus, Michael T; Amsterdam, Adam; Tian, Yu; Kalmukova, Ralitsa; Mueller, Elisabetta; Benjamin, Thomas; Spiegelman, Bruce M; Sharp, Phillip A; Hopkins, Nancy; Yaffe, Michael B
Mesenchymal stem cells (MSCs) are a pluripotent cell type that can differentiate into several distinct lineages. Two key transcription factors, Runx2 and peroxisome proliferator-activated receptor gamma (PPARgamma), drive MSCs to differentiate into either osteoblasts or adipocytes, respectively. How these two transcription factors are regulated in order to specify these alternate cell fates remains a pivotal question. Here we report that a 14-3-3-binding protein, TAZ (transcriptional coactivator with PDZ-binding motif), coactivates Runx2-dependent gene transcription while repressing PPARgamma-dependent gene transcription. By modulating TAZ expression in model cell lines, mouse embryonic fibroblasts, and primary MSCs in culture and in zebrafish in vivo, we observed alterations in osteogenic versus adipogenic potential. These results indicate that TAZ functions as a molecular rheostat that modulates MSC differentiation.
PMID: 16099986
ISSN: 1095-9203
CID: 2572362

Evolutionary conservation of nuclear and nucleolar targeting sequences in yeast ribosomal protein S6A

Lipsius, Edgar; Walter, Korden; Leicher, Torsten; Phlippen, Wolfgang; Bisotti, Marc-Angelo; Kruppa, Joachim
Over 1 billion years ago, the animal kingdom diverged from the fungi. Nevertheless, a high sequence homology of 62% exists between human ribosomal protein S6 and S6A of Saccharomyces cerevisiae. To investigate whether this similarity in primary structure is mirrored in corresponding functional protein domains, the nuclear and nucleolar targeting signals were delineated in yeast S6A and compared to the known human S6 signals. The complete sequence of S6A and cDNA fragments was fused to the 5'-end of the LacZ gene, the constructs were transiently expressed in COS cells, and the subcellular localization of the fusion proteins was detected by indirect immunofluorescence. One bipartite and two monopartite nuclear localization signals as well as two nucleolar binding domains were identified in yeast S6A, which are located at homologous regions in human S6 protein. Remarkably, the number, nature, and position of these targeting signals have been conserved, albeit their amino acid sequences have presumably undergone a process of co-evolution with their corresponding rRNAs.
PMID: 15979583
ISSN: 0006-291x
CID: 1267142

Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene

Jin, Wusong; Fukushima, Takanori; Niki, Makiko; Kosaka, Atsuko; Ishii, Noriyuki; Aida, Takuzo
Self-assembly of a Gemini-shaped, chiral amphiphilic hexa-peri-hexabenzocoronene having two chiral oxyalkylene side chains, along with two lipophilic side chains, yields graphitic nanotubes with one-handed helical chirality. The nanotubes are characterized by an extremely high aspect ratio of >1,000 and have a uniform diameter of 20 nm and a wall thickness of 3 nm. The nanotubes with right- and left-handed helical senses were obtained from the (S)- and (R)-enantiomers of the amphiphile, respectively, due to an efficient translation of point chirality into supramolecular helical chirality. The (S)- and (R)-enantiomers coassemble at varying mole ratios to give nanotubes, whose circular dichroism profiles are almost unchanged over a wide range of the enantiomeric excess of the amphiphile (100-20%). The high level of chirality amplification thus observed indicates a long-range cooperativity in the self-assembling process. In sharp contrast, a hexabenzocoronene amphiphile with chiral lipophilic side chains did not form nanotubular assemblies. The present work demonstrates the majority rule in noncovalent systems and also may provide a synthetic strategy toward realization of molecular solenoids.
PMCID:1182409
PMID: 16043721
ISSN: 0027-8424
CID: 2982022

Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain

Stuart, Lynda M; Deng, Jiusheng; Silver, Jessica M; Takahashi, Kazue; Tseng, Anita A; Hennessy, Elizabeth J; Ezekowitz, R Alan B; Moore, Kathryn J
Phagocyte recognition and clearance of bacteria play essential roles in the host response to infection. In an on-going forward genetic screen, we identify the Drosophila melanogaster scavenger receptor Croquemort as a receptor for Staphylococcus aureus, implicating for the first time the CD36 family as phagocytic receptors for bacteria. In transfection assays, the mammalian Croquemort paralogue CD36 confers binding and internalization of Gram-positive and, to a lesser extent, Gram-negative bacteria. By mutational analysis, we show that internalization of S. aureus and its component lipoteichoic acid requires the COOH-terminal cytoplasmic portion of CD36, specifically Y463 and C464, which activates Toll-like receptor (TLR) 2/6 signaling. Macrophages lacking CD36 demonstrate reduced internalization of S. aureus and its component lipoteichoic acid, accompanied by a marked defect in tumor necrosis factor-alpha and IL-12 production. As a result, Cd36-/- mice fail to efficiently clear S. aureus in vivo resulting in profound bacteraemia. Thus, response to S. aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain, which initiates TLR2/6 signaling
PMCID:2171464
PMID: 16061696
ISSN: 0021-9525
CID: 106630