Searched for: school:SOM
Department/Unit:Cell Biology
The dynamic ER: experimental approaches and current questions
Federovitch, Christine M; Ron, David; Hampton, Randolph Y
The endoplasmic reticulum (ER) is an extremely plastic and dynamic organelle. Its size and shape can undergo drastic changes to meet changing demands for ER-related functions, or as a response to drugs or pathogens. Because of the ER's key functions in protein and lipid synthesis, this organelle is a hotbed of detailed molecular analysis
PMID: 15975777
ISSN: 0955-0674
CID: 62635
Topical vascular endothelial growth factor reverses delayed wound healing secondary to angiogenesis inhibitor administration
Michaels, Joseph 5th; Dobryansky, Michael; Galiano, Robert D; Bhatt, Kirit A; Ashinoff, Russell; Ceradini, Daniel J; Gurtner, Geoffrey C
The prevention of new blood vessel growth is an increasingly attractive strategy to limit tumor growth. However, it remains unclear whether anti-angiogenesis approaches will impair wound healing, a process thought to be angiogenesis dependent. Results of previous studies differ as to whether angiogenesis inhibitors delay wound healing. We evaluated whether endostatin at tumor-inhibiting doses delayed excisional wound closure. C57/BL6J mice were treated with endostatin or phosphate-buffered solution 3 days prior to the creation of two full-thickness wounds on the dorsum. Endostatin was administered daily until wound closure was complete. A third group received endostatin, but also had daily topical vascular endothelial growth factor applied locally to the wound. Wound area was measured daily and the wounds were analyzed for granulation tissue formation, epithelial gap, and wound vascularity. Endostatin-treated mice showed a significant delay in wound healing. Granulation tissue formation and wound vascularity were significantly decreased, but reepithelialization was not effected. Topical vascular endothelial growth factor application to wounds in endostatin-treated mice resulted in increased granulation tissue formation, increased wound vascularity, and wound closure approaching that of control mice. This study shows that the angiogenesis inhibitor endostatin delays wound healing and that topical vascular endothelial growth factor is effective in counteracting this effect
PMID: 16176459
ISSN: 1067-1927
CID: 62526
Compartmentalized signalling of Ras
Philips, M R
Ras proteins associate with cellular membranes by virtue of a series of post-translational modifications of their C-terminal CAAX sequences. The discovery that two of the three enzymes that modify CAAX proteins are restricted to the endoplasmic reticulum led to the recognition that all nascent Ras proteins transit endomembranes en route to the PM (plasma membrane) and that at steady-state N-Ras and H-Ras are highly expressed on the Golgi apparatus. To test the hypothesis that Ras proteins on internal membranes can signal, we developed a fluorescent probe that reports when and where in living cells Ras becomes active. We found that growth factors stimulated rapid and transient activation of Ras on the PM followed by delayed and sustained activation on the Golgi. We mapped one pathway responsible for this activity as involving PLCgamma (phospholipase Cgamma)/DAG (diacylglycerol)+Ca2+/RasGRP1. Using mammalian cells and fission yeast, we have shown that differential localization of activated Ras preferentially activates distinct signalling pathways. In very recent work, we have found that (i) the subcellular localization of K-Ras can be acutely modulated by phosphorylation of its C-terminal hypervariable region by PKC, (ii) among the membranes upon which phosphorylated K-Ras accumulates is the outer mitochondrial membrane and (iii) phosphorylated, internalized K-Ras promotes apoptosis. Thus the signalling output of Ras depends on its subcellular localization
PMID: 16042567
ISSN: 0300-5127
CID: 64119
Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates
Park, S; Kelly, R; Kahn, J Nielsen; Robles, J; Hsu, M-J; Register, E; Li, W; Vyas, V; Fan, H; Abruzzo, G; Flattery, A; Gill, C; Chrebet, G; Parent, S A; Kurtz, M; Teppler, H; Douglas, C M; Perlin, D S
An association between reduced susceptibility to echinocandins and changes in the 1,3-beta-d-glucan synthase (GS) subunit Fks1p was investigated. Specific mutations in fks1 genes from Saccharomyces cerevisiae and Candida albicans mutants are described that are necessary and sufficient for reduced susceptibility to the echinocandin drug caspofungin. One group of amino acid changes in ScFks1p, ScFks2p, and CaFks1p defines a conserved region (Phe 641 to Asp 648 of CaFks1p) in the Fks1 family of proteins. The relationship between several of these fks1 mutations and the phenotype of reduced caspofungin susceptibility was confirmed using site-directed mutagenesis or integrative transformation. Glucan synthase activity from these mutants was less susceptible to caspofungin inhibition, and heterozygous and homozygous Cafks1 C. albicans mutants could be distinguished based on the shape of inhibition curves. The C. albicans mutants were less susceptible to caspofungin than wild-type strains in a murine model of disseminated candidiasis. Five Candida isolates with reduced susceptibility to caspofungin were recovered from three patients enrolled in a clinical trial. Four C. albicans strains showed amino acid changes at Ser 645 of CaFks1p, while a single Candida krusei isolate had a deduced R1361G substitution. The clinical C. albicans mutants were less susceptible to caspofungin in the disseminated candidiasis model, and GS inhibition profiles and DNA sequence analyses were consistent with a homozygous fks1 mutation. Our results indicate that substitutions in the Fks1p subunit of GS are sufficient to confer reduced susceptibility to echinocandins in S. cerevisiae and the pathogens C. albicans and C. krusei.
PMCID:1196231
PMID: 16048935
ISSN: 0066-4804
CID: 310322
Retinal blood vessels develop in response to local VEGF-A signals in the absence of blood flow
Curatola, Anna Maria; Moscatelli, David; Norris, Asma; Hendricks-Munoz, Karen
The role of hemodynamic forces and other signals from circulating blood in guiding the development of the retinal vasculature was examined by following the growth of these vessels in organ cultures. Retinal vascular development in organ cultures was monitored by immunofluorescent staining of retinal whole-mounts using antibodies against ICAM-2, a specific marker for endothelial cells and by vascular adenosine disphosphatase activity. Under culture conditions, the retinal vasculature from mice at postnatal day 3 (P3) grew from the optic nerve area to the edge of the retina in a manner similar to that observed in vivo. Both inner and outer vascular plexuses formed in retinal explants. Within the first few days of organ culture, the initial uniform meshwork of blood vessels was reorganized into arterioles, venules, and capillaries. As in animals, the initial retinal vascular plexus contained abundant vessels, and afterward some vessels regressed leading to the formation of a mature vascular bed. Changes in vascular density due to blood vessel growth and remodeling were confirmed by RT-PCR and Western blot analyses of ICAM-2 mRNA and protein levels, respectively. In addition, during in vitro retinal vascularization, arterioles acquired mural cell coverage, as shown by positive staining for alpha-smooth muscle actin. Thus, blood flow and blood-derived signals were not required for the development and maturation of retinal vessels. In contrast, stability of blood vessels in retinal explants was tightly regulated by endogenous levels of vascular endothelial growth factor-A (VEGF-A). VEGF-A was expressed in the explants throughout the culture period, and addition of neutralizing antibodies against VEGF-A to the organ culture caused a severe regression of blood vessels from the vascular front toward the optic nerve. In contrast, addition of anti-FGF-2 antibodies had no effect on the developing vasculature. Thus, retinal vascular development is dependent on local VEGF-A signals rather than systemic signals
PMID: 16011835
ISSN: 0014-4835
CID: 58065
Somatic control of germline sexual development is mediated by the JAK/STAT pathway
Wawersik, Matthew; Milutinovich, Allison; Casper, Abbie L; Matunis, Erika; Williams, Brian; Van Doren, Mark
Germ cells must develop along distinct male or female paths to produce the sperm or eggs required for sexual reproduction. In both mouse and Drosophila, the sexual identity of germ cells is influenced by the sex of the surrounding somatic tissue (for example, refs 1, 2, reviewed in refs 3, 4); however, little is known about how the soma controls germline sex determination. Here we show that the janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway provides a sex-specific signal from the soma to the germ line in Drosophila embryonic gonads. The somatic gonad expresses a JAK/STAT ligand, unpaired (upd), in a male-specific manner, and activates the JAK/STAT pathway in male germ cells at the time of gonad formation. Furthermore, the JAK/STAT pathway is necessary for male-specific germ cell behaviour during early gonad development, and is sufficient to activate aspects of male germ cell behaviour in female germ cells. Our findings provide direct evidence that the JAK/STAT pathway mediates a key signal from the somatic gonad that regulates male germline sexual development.
PMCID:1421378
PMID: 16049490
ISSN: 1476-4687
CID: 2206292
Inhibition of atherogenesis in BLT1-deficient mice reveals a role for LTB4 and BLT1 in smooth muscle cell recruitment
Heller, Eric A; Liu, Emerson; Tager, Andrew M; Sinha, Sumita; Roberts, Jesse D; Koehn, Stephanie L; Libby, Peter; Aikawa, Elena Rabkin; Chen, Ji Qiu; Huang, Paul; Freeman, Mason W; Moore, Kathryn J; Luster, Andrew D; Gerszten, Robert E
BACKGROUND: It is known that 5-lipoxygenase and its product, leukotriene B4 (LTB4), are highly expressed in several human pathologies, including atherosclerotic plaque. LTB(4) signals primarily through its high-affinity G protein-coupled receptor BLT1, which is expressed on specific leukocyte subsets. BLT1 receptor expression and function on other atheroma-associated cell types is unknown. METHODS AND RESULTS: To directly assess the role of the LTB4-BLT1 pathway in atherogenesis, we bred BLT1(-/-) mice into the atherosclerosis-susceptible apoE(-/-) strain. Compound-deficient apoE(-/-)/Blt1(-/-) mice fed a Western-type diet had a marked reduction in plaque formation compared with apoE(-/-) controls. Immunohistochemical analysis of atherosclerotic lesions in compound-deficient mice revealed a striking decrease in smooth muscle cells (SMCs) and significant decreases in macrophages and T cells. We report here novel evidence of the expression and function of BLT1 on vascular SMCs. LTB4 triggered SMC chemotaxis, which was pertussis toxin sensitive in Blt1(+/+) SMCs and absent in Blt1(-/-) cells, suggesting that BLT1 was the dominant receptor mediating effector functions through a G protein-coupled signaling pathway. Furthermore, BLT1 colocalized with SMCs in human atherosclerotic lesions. CONCLUSIONS: These new findings extend the role of inducible BLT1 to nonleukocyte populations and suggest an important target for intervention to modulate the response to vascular injury
PMID: 16043658
ISSN: 0009-7322
CID: 106631
POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end
Hockemeyer, Dirk; Sfeir, Agnel J; Shay, Jerry W; Wright, Woodring E; de Lange, Titia
The hallmarks of telomere dysfunction in mammals are reduced telomeric 3' overhangs, telomere fusions, and cell cycle arrest due to a DNA damage response. Here, we report on the phenotypes of RNAi-mediated inhibition of POT1, the single-stranded telomeric DNA-binding protein. A 10-fold reduction in POT1 protein in tumor cells induced neither telomere fusions nor cell cycle arrest. However, the 3' overhang DNA was reduced and all telomeres elicited a transient DNA damage response in G1, indicating that extensive telomere damage can occur without cell cycle arrest or telomere fusions. RNAi to POT1 also revealed its role in generating the correct sequence at chromosome ends. The recessed 5' end of the telomere, which normally ends on the sequence ATC-5', was changed to a random position within the AATCCC repeat. Thus, POT1 determines the structure of the 3' and 5' ends of human chromosomes, and its inhibition generates a novel combination of telomere dysfunction phenotypes in which chromosome ends behave transiently as sites of DNA damage, yet remain protected from nonhomologous end-joining
PMCID:1176460
PMID: 15973431
ISSN: 0261-4189
CID: 149052
The structure of the 80S ribosome from Trypanosoma cruzi reveals unique rRNA components
Gao, Haixiao; Ayub, Maximiliano Juri; Levin, Mariano J; Frank, Joachim
We present analysis, by cryo-electron microscopy and single-particle reconstruction, of the structure of the 80S ribosome from Trypanosoma cruzi, the kinetoplastid protozoan pathogen that causes Chagas disease. The density map of the T. cruzi 80S ribosome shows the phylogenetically conserved eukaryotic rRNA core structure, together with distinctive structural features in both the small and large subunits. Remarkably, a previously undescribed helical structure appears in the small subunit in the vicinity of the mRNA exit channel. We propose that this rRNA structure likely participates in the recruitment of ribosome onto the 5' end of mRNA, in facilitating and modulating the initiation of translation that is unique to the trypanosomes
PMCID:1174928
PMID: 16014419
ISSN: 0027-8424
CID: 66307
Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway
Goodwin, J Shawn; Drake, Kimberly R; Rogers, Carl; Wright, Latasha; Lippincott-Schwartz, Jennifer; Philips, Mark R; Kenworthy, Anne K
Palmitoylation is postulated to regulate Ras signaling by modulating its intracellular trafficking and membrane microenvironment. The mechanisms by which palmitoylation contributes to these events are poorly understood. Here, we show that dynamic turnover of palmitate regulates the intracellular trafficking of HRas and NRas to and from the Golgi complex by shifting the protein between vesicular and nonvesicular modes of transport. A combination of time-lapse microscopy and photobleaching techniques reveal that in the absence of palmitoylation, GFP-tagged HRas and NRas undergo rapid exchange between the cytosol and ER/Golgi membranes, and that wild-type GFP-HRas and GFP-NRas are recycled to the Golgi complex by a nonvesicular mechanism. Our findings support a model where palmitoylation kinetically traps Ras on membranes, enabling the protein to undergo vesicular transport. We propose that a cycle of depalmitoylation and repalmitoylation regulates the time course and sites of Ras signaling by allowing the protein to be released from the cell surface and rapidly redistributed to intracellular membranes
PMCID:2171405
PMID: 16027222
ISSN: 0021-9525
CID: 64121