Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14105


Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice

Moore, Kathryn J; Kunjathoor, Vidya V; Koehn, Stephanie L; Manning, Jennifer J; Tseng, Anita A; Silver, Jessica M; McKee, Mary; Freeman, Mason W
Macrophage internalization of modified lipoproteins is thought to play a critical role in the initiation of atherogenesis. Two scavenger receptors, scavenger receptor A (SR-A) and CD36, have been centrally implicated in this lipid uptake process. Previous studies showed that these receptors mediated the majority of cholesterol ester accumulation in macrophages exposed to oxidized LDL and that mice with deletions of either receptor exhibited marked reductions in atherosclerosis. This work has contributed to an atherosclerosis paradigm: scavenger receptor-mediated oxidized lipoprotein uptake is required for foam cell formation and atherogenesis. In this study, Apoe-/- mice lacking SR-A or CD36, backcrossed into the C57BL/6 strain for 7 generations, were fed an atherogenic diet for 8 weeks. Hyperlipidemic Cd36-/-Apoe-/- and Msr1-/-Apoe-/- mice showed significant reductions in peritoneal macrophage lipid accumulation in vivo; however, in contrast with previous reports, this was associated with increased aortic sinus lesion areas. Characterization of aortic sinus lesions by electron microscopy and immunohistochemistry showed abundant macrophage foam cells, indicating that lipid uptake by intimal macrophages occurs in the absence of CD36 or SR-A. These data show that alternative lipid uptake mechanisms may contribute to macrophage cholesterol ester accumulation in vivo and suggest that the roles of SR-A and CD36 as proatherosclerotic mediators of modified LDL uptake in vivo need to be reassessed
PMCID:1180534
PMID: 16075060
ISSN: 0021-9738
CID: 106629

Somatic control of germline sexual development is mediated by the JAK/STAT pathway

Wawersik, Matthew; Milutinovich, Allison; Casper, Abbie L; Matunis, Erika; Williams, Brian; Van Doren, Mark
Germ cells must develop along distinct male or female paths to produce the sperm or eggs required for sexual reproduction. In both mouse and Drosophila, the sexual identity of germ cells is influenced by the sex of the surrounding somatic tissue (for example, refs 1, 2, reviewed in refs 3, 4); however, little is known about how the soma controls germline sex determination. Here we show that the janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway provides a sex-specific signal from the soma to the germ line in Drosophila embryonic gonads. The somatic gonad expresses a JAK/STAT ligand, unpaired (upd), in a male-specific manner, and activates the JAK/STAT pathway in male germ cells at the time of gonad formation. Furthermore, the JAK/STAT pathway is necessary for male-specific germ cell behaviour during early gonad development, and is sufficient to activate aspects of male germ cell behaviour in female germ cells. Our findings provide direct evidence that the JAK/STAT pathway mediates a key signal from the somatic gonad that regulates male germline sexual development.
PMCID:1421378
PMID: 16049490
ISSN: 1476-4687
CID: 2206292

Inhibition of atherogenesis in BLT1-deficient mice reveals a role for LTB4 and BLT1 in smooth muscle cell recruitment

Heller, Eric A; Liu, Emerson; Tager, Andrew M; Sinha, Sumita; Roberts, Jesse D; Koehn, Stephanie L; Libby, Peter; Aikawa, Elena Rabkin; Chen, Ji Qiu; Huang, Paul; Freeman, Mason W; Moore, Kathryn J; Luster, Andrew D; Gerszten, Robert E
BACKGROUND: It is known that 5-lipoxygenase and its product, leukotriene B4 (LTB4), are highly expressed in several human pathologies, including atherosclerotic plaque. LTB(4) signals primarily through its high-affinity G protein-coupled receptor BLT1, which is expressed on specific leukocyte subsets. BLT1 receptor expression and function on other atheroma-associated cell types is unknown. METHODS AND RESULTS: To directly assess the role of the LTB4-BLT1 pathway in atherogenesis, we bred BLT1(-/-) mice into the atherosclerosis-susceptible apoE(-/-) strain. Compound-deficient apoE(-/-)/Blt1(-/-) mice fed a Western-type diet had a marked reduction in plaque formation compared with apoE(-/-) controls. Immunohistochemical analysis of atherosclerotic lesions in compound-deficient mice revealed a striking decrease in smooth muscle cells (SMCs) and significant decreases in macrophages and T cells. We report here novel evidence of the expression and function of BLT1 on vascular SMCs. LTB4 triggered SMC chemotaxis, which was pertussis toxin sensitive in Blt1(+/+) SMCs and absent in Blt1(-/-) cells, suggesting that BLT1 was the dominant receptor mediating effector functions through a G protein-coupled signaling pathway. Furthermore, BLT1 colocalized with SMCs in human atherosclerotic lesions. CONCLUSIONS: These new findings extend the role of inducible BLT1 to nonleukocyte populations and suggest an important target for intervention to modulate the response to vascular injury
PMID: 16043658
ISSN: 0009-7322
CID: 106631

POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end

Hockemeyer, Dirk; Sfeir, Agnel J; Shay, Jerry W; Wright, Woodring E; de Lange, Titia
The hallmarks of telomere dysfunction in mammals are reduced telomeric 3' overhangs, telomere fusions, and cell cycle arrest due to a DNA damage response. Here, we report on the phenotypes of RNAi-mediated inhibition of POT1, the single-stranded telomeric DNA-binding protein. A 10-fold reduction in POT1 protein in tumor cells induced neither telomere fusions nor cell cycle arrest. However, the 3' overhang DNA was reduced and all telomeres elicited a transient DNA damage response in G1, indicating that extensive telomere damage can occur without cell cycle arrest or telomere fusions. RNAi to POT1 also revealed its role in generating the correct sequence at chromosome ends. The recessed 5' end of the telomere, which normally ends on the sequence ATC-5', was changed to a random position within the AATCCC repeat. Thus, POT1 determines the structure of the 3' and 5' ends of human chromosomes, and its inhibition generates a novel combination of telomere dysfunction phenotypes in which chromosome ends behave transiently as sites of DNA damage, yet remain protected from nonhomologous end-joining
PMCID:1176460
PMID: 15973431
ISSN: 0261-4189
CID: 149052

The structure of the 80S ribosome from Trypanosoma cruzi reveals unique rRNA components

Gao, Haixiao; Ayub, Maximiliano Juri; Levin, Mariano J; Frank, Joachim
We present analysis, by cryo-electron microscopy and single-particle reconstruction, of the structure of the 80S ribosome from Trypanosoma cruzi, the kinetoplastid protozoan pathogen that causes Chagas disease. The density map of the T. cruzi 80S ribosome shows the phylogenetically conserved eukaryotic rRNA core structure, together with distinctive structural features in both the small and large subunits. Remarkably, a previously undescribed helical structure appears in the small subunit in the vicinity of the mRNA exit channel. We propose that this rRNA structure likely participates in the recruitment of ribosome onto the 5' end of mRNA, in facilitating and modulating the initiation of translation that is unique to the trypanosomes
PMCID:1174928
PMID: 16014419
ISSN: 0027-8424
CID: 66307

Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway

Goodwin, J Shawn; Drake, Kimberly R; Rogers, Carl; Wright, Latasha; Lippincott-Schwartz, Jennifer; Philips, Mark R; Kenworthy, Anne K
Palmitoylation is postulated to regulate Ras signaling by modulating its intracellular trafficking and membrane microenvironment. The mechanisms by which palmitoylation contributes to these events are poorly understood. Here, we show that dynamic turnover of palmitate regulates the intracellular trafficking of HRas and NRas to and from the Golgi complex by shifting the protein between vesicular and nonvesicular modes of transport. A combination of time-lapse microscopy and photobleaching techniques reveal that in the absence of palmitoylation, GFP-tagged HRas and NRas undergo rapid exchange between the cytosol and ER/Golgi membranes, and that wild-type GFP-HRas and GFP-NRas are recycled to the Golgi complex by a nonvesicular mechanism. Our findings support a model where palmitoylation kinetically traps Ras on membranes, enabling the protein to undergo vesicular transport. We propose that a cycle of depalmitoylation and repalmitoylation regulates the time course and sites of Ras signaling by allowing the protein to be released from the cell surface and rapidly redistributed to intracellular membranes
PMCID:2171405
PMID: 16027222
ISSN: 0021-9525
CID: 64121

Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle

Wang, Xiaoxia; Blagden, Chris; Fan, Jihua; Nowak, Scott J; Taniuchi, Ichiro; Littman, Dan R; Burden, Steven J
Disruptions in the use of skeletal muscle lead to muscle atrophy. After short periods of disuse, muscle atrophy is reversible, and even after prolonged periods of inactivity, myofiber degeneration is uncommon. The pathways that regulate atrophy, initiated either by peripheral nerve damage, immobilization, aging, catabolic steroids, or cancer cachexia, however, are poorly understood. Previously, we found that Runx1 (AML1), a DNA-binding protein that is homologous to Drosophila Runt and has critical roles in hematopoiesis and leukemogenesis, is poorly expressed in innervated muscle, but strongly induced in muscle shortly after denervation. To determine the function of Runx1 in skeletal muscle, we generated mice in which Runx1 was selectively inactivated in muscle. Here, we show that Runx1 is required to sustain muscle by preventing denervated myofibers from undergoing myofibrillar disorganization and autophagy, structural defects found in a variety of congenital myopathies. We find that only 29 genes, encoding ion channels, signaling molecules, and muscle structural proteins, depend upon Runx1 expression, suggesting that their misregulation causes the dramatic muscle wasting. These findings demonstrate an unexpected role for electrical activity in regulating muscle wasting, and indicate that muscle disuse induces compensatory mechanisms that limit myofiber atrophy. Moreover, these results suggest that reduced muscle activity could cause or contribute to congenital myopathies if Runx1 or its target genes were compromised
PMCID:1176009
PMID: 16024660
ISSN: 0890-9369
CID: 57720

Dissecting the role of VEGFR in hemocyte migration in Drosophila [Meeting Abstract]

Haesemeyer, M; Siekhaus, D; Lehmann, R
ISI:000230683800631
ISSN: 0012-1606
CID: 58653

Hand2 regulates myocardial differentiation within the lateral plate mesoderm [Meeting Abstract]

Schoenebeck, JJ; Yelon, D
ISI:000230683800501
ISSN: 0012-1606
CID: 58650

Molecular anatomy of the embryonic zebrafish heart [Meeting Abstract]

Siegal, GR; Adameyko, II; Tevosian, SG; Yelon, D
ISI:000230683800499
ISSN: 0012-1606
CID: 58649