Searched for: school:SOM
Department/Unit:Cell Biology
Beta 2-adrenergic receptor activation delays dermal fibroblast-mediated contraction of collagen gels via a cAMP-dependent mechanism
Pullar, Christine E; Isseroff, R Rivkah
Dermal fibroblasts actively contribute to wound healing by migrating to the wound, synthesizing extracellular matrices, and generating mechanical forces within the wound to initiate wound contraction. Fibroblast-seeded collagen gels provide an in vitro model to study wound contraction. The authors are evaluating the role of the adrenergic signaling system in cutaneous wound repair and recently found that beta2-adrenergic receptor (beta2-AR) activation markedly decreases keratinocyte migration, an essential step in wound reepithelialization. Because the beta2-ARs are also expressed on dermal fibroblasts, a study was initiated to determine the effects of beta-adrenergic agonists on dermal fibroblast-mediated collagen gel contraction. A beta-agonist (isoproterenol) delayed gel contraction in a dose-dependent manner. A beta2-AR specific antagonist (ICI 118,551) prevented the delay, indicating that the beta2-AR alone mediated the delay. The active cyclic adenosine monophosphate (cAMP) analog also delayed collagen gel contraction, whereas an inactive cAMP analog partially prevented the delay, suggesting that the mechanism for beta-AR agonist-mediated delay was partly cAMP-dependent. Identifying and characterizing agents that modulate wound contraction improves understanding of the wound healing process and could result in novel therapeutic strategies for preventing unwanted wound contraction in burn and trauma patients
PMID: 16008730
ISSN: 1067-1927
CID: 133018
Aldose reductase and AGE-RAGE pathways: key players in myocardial ischemic injury
Kaneko, Michiyo; Bucciarelli, Loredana; Hwang, Yuying C; Lee, Larisee; Yan, Shi Fang; Schmidt, Ann Marie; Ramasamy, Ravichandran
Cardiovascular disease represents the major cause of morbidity and mortality in patients with diabetes mellitus. The impact of cardiac disease includes increased sensitivity of diabetic myocardium to ischemic episodes and diabetic cardiomyopathy, manifested as a subnormal functional response of the diabetic heart independent of coronary artery disease. In this context, we were to our knowledge the first to demonstrate that diabetes increases glucose flux via the first and key enzyme, aldose reductase, of the polyol pathway, resulting in impaired glycolysis under normoxic and ischemic conditions in diabetic myocardium. Our laboratory has been investigating the role of the polyol pathway in mediating myocardial ischemic injury in diabetics. Furthermore, the influence of the aldose reductase pathway in facilitating generation of key potent glycating compounds has led us to investigate the impact of advanced glycation end products (AGEs) in myocardial ischemic injury in diabetics. The potent impact of increased flux via the aldose reductase pathway and the increased AGE interactions with its receptor (RAGE) resulting in cardiac dysfunction will be discussed in this chapter
PMID: 16037296
ISSN: 0077-8923
CID: 130802
Perfusion of hearts with triglyceride-rich particles reproduces the metabolic abnormalities in lipotoxic cardiomyopathy
Pillutla, Priya; Hwang, Yuying C; Augustus, Ayanna; Yokoyama, Masayoshi; Yagyu, Hiroaki; Johnston, Thomas P; Kaneko, Michiyo; Ramasamy, Ravichandran; Goldberg, Ira J
Hearts with overexpression of anchored lipoprotein lipase (LpL) by cardiomyocytes (hLpL(GPI) mice) develop a lipotoxic cardiomyopathy. To characterize cardiac fatty acid (FA) and triglyceride (TG) metabolism in these mice and to determine whether changes in lipid metabolism precede cardiac dysfunction, hearts from young mice were perfused in Langendorff mode with [14C]palmitate. In hLpL(GPI) hearts, FA uptake and oxidation were decreased by 59 and 82%, respectively. This suggests reliance on an alternative energy source, such as TG. Indeed, these hearts oxidized 88% more TG. Hearts from young hLpL(GPI) mice also had greater uptake of intravenously injected cholesteryl ester-labeled Intralipid and VLDL. To determine whether perfusion of normal hearts would mimic the metabolic alterations found in hLpL(GPI) mouse hearts, wild-type hearts were perfused with [14C]palmitate and either human VLDL or Intralipid (0.4 mM TG). Both sources of TG reduced [14C]palmitate uptake (48% with VLDL and 45% with Intralipid) and FA oxidation (71% with VLDL and 65% with Intralipid). Addition of either heparin or LpL inhibitor P407 to Intralipid-containing perfusate restored [14C]palmitate uptake and confirmed that Intralipid inhibition requires local LpL. Our data demonstrate that reduced FA uptake and oxidation occur before mechanical dysfunction in hLpL(GPI) lipotoxicity. This physiology is reproduced with perfusion of hearts with TG-containing particles. Together, the results demonstrate that cardiac uptake of TG-derived FA reduces utilization of albumin-FA
PMID: 15701679
ISSN: 0193-1849
CID: 130837
Immune regulatory mechanisms influence early pathology in spinal cord injury and in spontaneous autoimmune encephalomyelitis
Marcondes, Maria Cecilia G; Furtado, Glaucia C; Wensky, Allen; Curotto de Lafaille, Maria A; Fox, Howard S; Lafaille, Juan J
Injuries to the central nervous system (CNS) trigger an inflammatory reaction with potentially devastating consequences. In this report we compared the characteristics of the inflammatory response on spinal cord injury (SCI) caused by a stab wound between the T7 and T9 vertebrae and spontaneous experimental autoimmune encephalomyelitis (EAE). SCI and EAE were compared in two types of myelin basic protein Ac1-11-specific T-cell receptor transgenic mice: T/R+ mice harbor regulatory T cells, and T/R- mice lack regulatory T cells. Our results show that 8 days after SCI, T/R- mice developed a strong T-cell infiltrate in the spinal cord, with remarkable down-modulation of CD4 expression that was accompanied by a local increase in Mac-3+ and F4/80+ reactivity and diffuse local and distal astrogliosis. In contrast, T/R+ mice exhibited a modest increase in CD4+ cells localized to the site of injury, without CD4 down-modulation; focal astrogliosis was restricted to the site of the lesion, although Mac-3+ and F4/80+ cells were also present. Similarly to T/R- mice that underwent SCI, T cells displaying down-modulated CD4 expression were found in the CNS of older T/R- mice afflicted by spontaneous EAE. Overall, our results suggest that common mechanisms regulate T-cell accumulation in CNS lesions of different causes, such as mechanic lesion or autoimmune-mediated damage
PMCID:1602407
PMID: 15920160
ISSN: 0002-9440
CID: 56086
Functional characterization of connexin43 mutations found in patients with oculodentodigital dysplasia
Shibayama, Junko; Paznekas, William; Seki, Akiko; Taffet, Steven; Jabs, Ethylin Wang; Delmar, Mario; Musa, Hassan
Specific mutations in GJA1, the gene encoding the gap junction protein connexin43 (Cx43), cause an autosomal dominant disorder called oculodentodigital dysplasia (ODDD). Here, we characterize the effects of 8 of these mutations on Cx43 function. Immunochemical studies have shown that most of the mutant proteins formed gap junction plaques at the sites of cell-cell apposition. However, 2 of the mutations (a codon duplication in the first extracellular loop, F52dup, and a missense mutation in the second extracellular loop, R202H, produced full-length connexins that failed to properly form gap junction plaques. Cx43 proteins containing ODDD mutations found in the N-terminus (Y17S), first transmembrane domain (G21R, A40V), second transmembrane domain (L90V), and cytoplasmic loop (I130T, K134E) do form gap junction plaques but show compromised channel function. L90V, I130T, and K134E demonstrated a significant decrease in junctional conductance relative to Cx43WT. Mutations Y17S, G21R, and A40V demonstrated a complete lack of functional electrical coupling even in the presence of significant plaque formation between paired cells. Heterologous channels formed by coexpression of Cx43WT and mutation R202H resulted in electrically functional gap junctions that were not permeable to Lucifer yellow. Therefore, the mutations found in ODDD not only cause phenotypic variability, but also result in various functional consequences. Overall, our data show an extensive range of molecular phenotypes, consistent with the pleiotropic nature of the clinical syndrome as a whole
PMID: 15879313
ISSN: 1524-4571
CID: 113858
Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue
Yu, Yi-Hao; Ginsberg, Henry N
For many years adipose tissue was viewed as the site where excess energy was stored, in the form of triglycerides (TGs), and where that energy, when needed elsewhere in the body, was released in the form of fatty acids (FAs). Recently, it has become clear that when the regulation of the storage and release of energy by adipose tissue is impaired, plasma FA levels become elevated and excessive metabolism of FA, including storage of TGs, occurs in nonadipose tissues. Most recently, work by several laboratories has made it clear that in addition to FA, adipose tissue communicates with the rest of the body by synthesizing and releasing a host of secreted molecules, collectively designated as adipokines. Several recent reviews have described how these molecules, along with FA, significantly effect total body glucose metabolism and insulin sensitivity. Relatively little attention has been paid to the effects of adipokines on lipid metabolism. In this review, we will describe, in detail, the effects of molecules secreted by adipose tissue, including FA, leptin, adiponectin, resistin, TNF-alpha, IL-6, and apolipoproteins, on lipid homeostasis in several nonadipose tissues, including liver, skeletal muscle, and pancreatic beta cells.
PMID: 15920027
ISSN: 0009-7330
CID: 762372
Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma
Lin, Wensheng; Harding, Heather P; Ron, David; Popko, Brian
Interferon-gamma (IFN-gamma) is believed to contribute to immune-mediated demyelinating disorders by targeting the myelin-producing oligodendrocyte, a cell known to be highly sensitive to the disruption of protein synthesis and to the perturbation of the secretory pathway. We found that apoptosis induced by IFN-gamma in cultured rat oligodendrocytes was associated with endoplasmic reticulum (ER) stress. ER stress also accompanied oligodendrocyte apoptosis and hypomyelination in transgenic mice that inappropriately expressed IFN-gamma in the central nervous system (CNS). Compared with a wild-type genetic background, the enforced expression of IFN-gamma in mice that were heterozygous for a loss of function mutation in pancreatic ER kinase (PERK) dramatically reduced animal survival, promoted CNS hypomyelination, and enhanced oligodendrocyte loss. PERK encodes an ER stress-inducible kinase that phosphorylates eukaryotic translation initiation factor 2alpha and specifically maintains client protein homeostasis in the stressed ER. Therefore, the hypersensitivity of PERK+/- mice to IFN-gamma implicates ER stress in demyelinating disorders that are induced by CNS inflammation.
PMCID:2171696
PMID: 15911877
ISSN: 0021-9525
CID: 72848
Phosphorylation of rat liver mitochondrial glycerol-3-phosphate acyltransferase by casein kinase 2
Onorato, Thomas M; Chakraborty, Sanjoy; Haldar, Dipak
We have previously shown rat liver mitochondrial glycerol-3-phosphate acyltransferase (mtGAT), which catalyzes the first step in de novo glycerolipid biosynthesis, is stimulated by casein kinase 2 (CK2) and that a phosphorylated protein of approximately 85 kDa is present in CK2-treated mitochondria. In this paper, we have identified the (32)P-labeled 85-kDa protein as mtGAT. We have also investigated whether the phosphorylation of mtGAT is because of CK2. Mitochondria were treated with CK2 and [gamma-(32)P]GTP as the phosphate donor. Autoradiography, Western blot, and immunoprecipitation results showed mtGAT was phosphorylated by CK2. Next, we incubated mitochondria with CK2 and either ATP or GTP, in the presence of heparin, a known inhibitor of CK2. Heparin inhibited CK2-induced stimulation of mtGAT activity; this inhibition resulted in decreased (32)P-labeling of mtGAT. Additionally, mitochondria were treated with CK2 and [gamma-(32)P]ATP in the presence of staurosporine (a serine/threonine protein kinase inhibitor), genistein (a tyrosine kinase inhibitor), and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB, a CK2 inhibitor). Only DRB, the CK2 inhibitor, greatly reduced the amount of (32)P-incorporation into mtGAT by CK2. Finally, isolated mitochondrial outer membrane was incubated with cytosol in the presence of [gamma-(32)P]GTP; (32)P-labeled mtGAT was detected. Collectively, these data suggest that CK2 phosphorylates mtGAT. The impact of our results in the regulation of mtGAT and other anabolic processes is discussed.
PMID: 15778226
ISSN: 0021-9258
CID: 970462
Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue
Burger, Patricia E; Xiong, Xiaozhong; Coetzee, Sandra; Salm, Sarah N; Moscatelli, David; Goto, Ken; Wilson, E Lynette
We previously showed that prostatic stem cells are concentrated in the proximal regions of prostatic ducts. We now report that these stem cells can be purified from isolated proximal duct regions by virtue of their high expression of the cell surface protein stem cell antigen 1 (Sca-1). In an in vivo prostate reconstitution assay, the purified Sca-1-expressing cell population isolated from the proximal region of ducts was more effective in generating prostatic tissue than a comparable population of Sca-1-depleted cells (203.0 +/- 83.1 mg vs. 11.9 +/- 9.2 mg) or a population of Sca-1-expressing cells isolated from the remaining regions of ducts (transit-amplifying cells) (31.9 +/- 24.1 mg). Almost all of the proliferative capacity of the proximal duct Sca-1-expressing cell population resides within the fraction of cells that express high levels of Sca-1 (top one-third), with the proximal region of prostatic ducts containing 7.2-fold more Sca-1(high) cells than the remaining regions. More than 60% of the high-expressing cells coexpress alpha6 integrin and the anti-apoptotic factor Bcl-2, markers that are also characteristic of stem cells of other origins. Further stratification of the phenotype of the stem cells may enable the development of rational therapies for treating prostate cancer and benign prostatic hyperplasia.
PMCID:1129148
PMID: 15899981
ISSN: 0027-8424
CID: 72723
Sterol stringency of proliferation and cell cycle progression in human cells
Suarez, Yajaira; Fernandez, Carlos; Ledo, Beatriz; Martin, Miguel; Gomez-Coronado, Diego; Lasuncion, Miguel A
Cholesterol is a major component of the plasma membrane in mammalian cells, where it acts as a modulator of bulk physical state and integrity. In addition to its structural role, cholesterol is essential for proliferation and other cell processes. The present study was undertaken to explore the stringency of the requirement for cholesterol as a regulator of proliferation and cell cycle progression. Comparisons were made between cholesterol and other sterol analogs that differ from cholesterol in three specific elements: the presence of a Delta5 double bond in ring B, the hydroxyl group at C-3, and the presence of an aliphatic side chain. The human leukemia cells HL-60 and MOLT-4 were cultured in cholesterol-free medium and treated with different sterols in the presence or absence of SKF 104976, a competitive inhibitor of lanosterol 14alpha-demethylase that allows the synthesis of isoprenoid derivatives but not cholesterol. Our results show that the beta-hydroxyl group at C-3 and the unsaturated bond at Delta5 are necessary for cell proliferation and cell cycle progression. The sterol analog 5alpha-cholestan-3beta-ol (dihydrocholesterol), which is saturated at Delta5 and has an A/B ring junction in the trans configuration, was also able to support cell growth. However, 5beta-cholestan-3beta-ol and 5beta-cholestan-3alpha-ol, both of which have an A/B ring junction in the cis configuration, were totally ineffective in supporting cell growth. Indeed, they produced an inhibition of cell proliferation and arrested the cell cycle specifically in the G2/M phase. These effects of 5beta-cholestanols were abrogated by cholesterol in a concentration-dependent manner. Moreover, 5beta-cholestanols potently inhibited cholesterol biosynthesis and transcription driven by the sterol response element. In addition to providing a description of the structural features of sterols associated with their supporting action on cell proliferation in mammalian cells, the present results demonstrate that selected cholesterol analogs may act as cytostatic agents, interrupting cell cycle progression specifically in the G2/M phase
PMID: 15904877
ISSN: 0006-3002
CID: 103953