Try a new search

Format these results:

Searched for:

person:jsj4

Total Results:

99


Kermit, a frizzled interacting protein, regulates frizzled 3 signaling in neural crest development

Tan, C; Deardorff, M A; Saint-Jeannet, J P; Yang, J; Arzoumanian, A; Klein, P S
Wnts are a family of secreted glycoproteins that are important for multiple steps in early development. Accumulating evidence suggests that frizzled genes encode receptors for Wnts. However, the mechanism through which frizzleds transduce a signal and the immediate downstream components that convey that signal are unclear. We have identified a new protein, Kermit, that interacts specifically with the C-terminus of Xenopus frizzled-3 (Xfz3). Kermit is a 331 amino acid protein with a central PDZ domain. Kermit mRNA is expressed throughout Xenopus development and is localized to neural tissue in a pattern that overlaps Xfz3 expression temporally and spatially. Co-expression of Xfz3 and Kermit results in a dramatic translocation of Kermit to the plasma membrane. Inhibition of Kermit function with morpholino antisense oligonucleotides directed against the 5' untranslated region of Kermit mRNA blocks neural crest induction by Xfz3, and this is rescued by co-injection of mRNA encoding the Kermit open reading frame. These observations suggest that Kermit is required for Wnt/frizzled signaling in neural crest development. To the best of our knowledge, Kermit is the first protein identified that interacts directly with the cytoplasmic portion of frizzleds to modulate their signaling activity.
PMID: 11585793
ISSN: 0950-1991
CID: 160896

LDL-receptor-related proteins in Wnt signal transduction

Tamai, K; Semenov, M; Kato, Y; Spokony, R; Liu, C; Katsuyama, Y; Hess, F; Saint-Jeannet, J P; He, X
The Wnt family of secreted signalling molecules are essential in embryo development and tumour formation. The Frizzled (Fz) family of serpentine receptors function as Wnt receptors, but how Fz proteins transduce signalling is not understood. In Drosophila, arrow phenocopies the wingless (DWnt-1) phenotype, and encodes a transmembrane protein that is homologous to two members of the mammalian low-density lipoprotein receptor (LDLR)-related protein (LRP) family, LRP5 and LRP6 (refs 12-15). Here we report that LRP6 functions as a co-receptor for Wnt signal transduction. In Xenopus embryos, LRP6 activated Wnt-Fz signalling, and induced Wnt responsive genes, dorsal axis duplication and neural crest formation. An LRP6 mutant lacking the carboxyl intracellular domain blocked signalling by Wnt or Wnt-Fz, but not by Dishevelled or beta-catenin, and inhibited neural crest development. The extracellular domain of LRP6 bound Wnt-1 and associated with Fz in a Wnt-dependent manner. Our results indicate that LRP6 may be a component of the Wnt receptor complex.
PMID: 11029007
ISSN: 0028-0836
CID: 2365212

Xenopus FK 506-binding protein, a novel immunophilin expressed during early development

Spokony, R; Saint-Jeannet, J P
FK 506-binding proteins (FKBPs) are a family of cytosolic proteins identified by virtue of their ability to bind the immunosuppressants FK 506 and rapamycin. While their function has been extensively studied in the immune system, little is known about their role during early embryonic development. Here we describe the cloning and expression of a new Xenopus FKBP (xFKBP). xFKBP encodes a 63-kDa protein that shares high sequence homology with mouse FKBP65. It is expressed maternally and becomes restricted after the gastrula stage to dorsal mesoderm and notochord. At the tailbud stage expression persists in the notochord and begins to accumulate in epidermis, branchial arches and developing somites. In adults, xFKBP mRNA is confined to the testis.
PMID: 10842073
ISSN: 0925-4773
CID: 2365492

Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a

Saint-Jeannet, J P; He, X; Varmus, H E; Dawid, I B
Members of the Wnt family of signaling molecules are expressed differentially along the dorsal-ventral axis of the developing neural tube. Thus we asked whether Wnt factors are involved in patterning of the nervous system along this axis. We show that Wnt-1 and Wnt-3a, both of which are expressed in the dorsal portion of the neural tube, could synergize with the neural inducers noggin and chordin in Xenopus animal explants to generate the most dorsal neural structure, the neural crest, as determined by the expression of Krox-20, AP-2, and slug. Overexpression of Wnt-1 or Wnt-3a in the neuroectoderm of whole embryos led to a dramatic increase of slug and Krox-20-expressing cells, but the hindbrain expression of Krox-20 remained unaffected. Enlargement in the neural crest population could occur even when cell proliferation was inhibited. Wnt-5A and Wnt-8, neither of which is expressed in the dorsal neuroectoderm, failed to induce neural crest markers. Overexpression of glycogen synthase kinase 3, known to antagonize Wnt signaling, blocked the neural-crest-inducing activity of Wnt-3a in animal explants and inhibited neural crest formation in whole embryos. We suggest that Wnt-1 and Wnt-3a have a role in patterning the neural tube along its dorsoventral axis and function in the differentiation of the neural crest.
PMCID:28371
PMID: 9391091
ISSN: 0027-8424
CID: 2365502

A member of the Frizzled protein family mediating axis induction by Wnt-5A

He, X; Saint-Jeannet, J P; Wang, Y; Nathans, J; Dawid, I; Varmus, H
In Xenopus laevis embryos, the Wingless/Wnt-1 subclass of Wnt molecules induces axis duplication, whereas the Wnt-5A subclass does not. This difference could be explained by distinct signal transduction pathways or by a lack of one or more Wnt-5A receptors during axis formation. Wnt-5A induced axis duplication and an ectopic Spemann organizer in the presence of hFz5, a member of the Frizzled family of seven-transmembrane receptors. Wnt-5A/hFz5 signaling was antagonized by glycogen synthase kinase-3 and by the amino-terminal ectodomain of hFz5. These results identify hFz5 as a receptor for Wnt-5A.
PMID: 9054360
ISSN: 0036-8075
CID: 2365512

Role of the Xlim-1 and Xbra genes in anteroposterior patterning of neural tissue by the head and trunk organizer

Taira, M; Saint-Jeannet, J P; Dawid, I B
Anteroposterior patterning of neural tissue is thought to be directed by the axial mesoderm which is functionally divided into head and trunk organizer. The LIM class homeobox gene Xlim-1 is expressed in the entire axial mesoderm, whereas the distinct transcription factor Xbra is expressed in the notochord but not in the prechordal mesoderm. mRNA injection experiments showed that Xenopus animal explants (caps) expressing an activated form of Xlim-1 (a LIM domain mutant named 3m) induce anterior neural markers whereas caps coexpressing Xlim-1/3m and Xbra induce posterior neural markers. These data indicate that, in terms of neural inducing ability, Xlim-1/3m-expressing caps correspond to the head organizer and Xlim-1/3m plus Xbra-coexpressing caps to the trunk organizer. Thus the expression domains of Xlim-1 and Xbra correlate with, and possibly define, the functional domains of the organizer. In animal caps Xlim-1/3m initiates expression of a neuralizing factor, chordin, whereas Xbra activates embryonic fibroblast growth factor (eFGF) expression, as reported previously; these factors could mediate the neural inducing and patterning effects that were observed. A dominant-negative FGF receptor (XFD) inhibits posteriorization by Xbra in a dose-dependent manner, supporting the suggestion that eFGF or a related factor has posteriorizing influence.
PMCID:19610
PMID: 9023353
ISSN: 0027-8424
CID: 2365522

Retinoid X receptor (RXR) within the RXR-retinoic acid receptor heterodimer binds its ligand and enhances retinoid-dependent gene expression

Minucci, S; Leid, M; Toyama, R; Saint-Jeannet, J P; Peterson, V J; Horn, V; Ishmael, J E; Bhattacharyya, N; Dey, A; Dawid, I B; Ozato, K
Retinoic acid receptor (RAR) and retinoid X receptor (RXR) form heterodimers and regulate retinoid-mediated gene expression. We studied binding of RXR- and RAR-selective ligands to the RXR-RAR heterodimer and subsequent transcription. In limited proteolysis analyses, both RXR and RAR in the heterodimer bound their respective ligands and underwent a conformational change in the presence of a retinoic acid-responsive element. In reporter analyses, the RAR ligand (but not the RXR ligand), when added singly, activated transcription, but coaddition of the two ligands led to synergistic activation of transcription. This activation required the AF-2 domain of both RXR and RAR. Genomic footprinting analysis was performed with P19 embryonal carcinoma cells, in which transcription of the RARbeta gene is induced upon retinoid addition. Paralleling the reporter activation data, only the RAR ligand induced in vivo occupancy of the RARbeta2 promoter when added singly. However, at suboptimal concentrations of RAR ligand, coaddition of the RXR ligand increased the stability of promoter occupancy. Thus, liganded RXR and RAR both participate in transcription. Finally, when these ligands were tested for teratogenic effects on zebra fish and Xenopus embryos, we found that coadministration of the RXR and RAR ligands caused more severe abnormalities in these embryos than either ligand alone, providing biological support for the synergistic action of the two ligands.
PMCID:231790
PMID: 9001218
ISSN: 0270-7306
CID: 2365222

The LIM homeodomain protein Lim-1 is widely expressed in neural, neural crest and mesoderm derivatives in vertebrate development

Karavanov, A A; Saint-Jeannet, J P; Karavanova, I; Taira, M; Dawid, I B
Polyclonal antibodies to Xlim-1 homeodomain protein of Xenopus laevis were used to study the developmental expression pattern of this protein in Xenopus, rat and mouse. Western blotting of embryo extracts injected with different Xlim-1 constructs confirmed the specificity of the antibody. Beginning at the gastrula stage, Xlim-1 protein was detected in three cell lineages: (i) notochord, (ii) pronephros and (iii) certain regions of the central nervous system, in agreement with earlier studies of the expression of Xlim-1 RNA (Taira et al., Development 120: 1525-1536, 1994a). In addition, several new locations of Xlim-1 expression were found, including the olfactory organ, retina, otic vesicle, dorsal root ganglia and adrenal gland. Similar expression patterns were seen for the Lim-1 protein in frog and rodent tissues. These observations implicate the Xlim-1 gene in the specification of multiple cell lineages, particularly within the nervous system, and emphasize the conserved nature of the role of this gene in different vertebrate animals.
PMID: 8793615
ISSN: 0214-6282
CID: 2365232

Retinoid X receptor-selective ligands produce malformations in Xenopus embryos

Minucci, S; Saint-Jeannet, J P; Toyama, R; Scita, G; DeLuca, L M; Tiara, M; Levin, A A; Ozato, K; Dawid, I B
Retinoids exert pleiotropic effects on the development of vertebrates through the action of retinoic acid receptors (RAR) and retinoid X receptors (RXR). We have investigated the effect of synthetic retinoids selective for RXR and RAR on the development of Xenopus and zebrafish embryos. In Xenopus, both ligands selective for RAR and RXR caused striking malformations along the anterior-posterior axis, whereas in zebrafish only ligands specific for RAR caused embryonic malformations. In Xenopus, RAR- and RXR-selective ligands regulated the expression of the Xlim-1, gsc, and HoxA1 genes similarly as all-trans-retinoic acid. Nevertheless, RXR-selective ligands activated only an RXR responsive reporter but not an RAR responsive reporter introduced by microinjection into the Xenopus embryo, consistent with our failure to detect conversion of an RXR-selective ligand to different derivatives in the embryo. These results suggest that Xenopus embryos possess a unique response pathway in which liganded RXR can control gene expression. Our observations further illustrate the divergence in retinoid responsiveness between different vertebrate species.
PMCID:39862
PMID: 8700839
ISSN: 0027-8424
CID: 2365532

Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos

He, X; Saint-Jeannet, J P; Woodgett, J R; Varmus, H E; Dawid, I B
Glycogen synthase kinase 3 (GSK-3) is homologous to the product of the Drosophila gene shaggy (zeste-white 3), which is required for signalling by wingless during Drosophila development. To test whether GSK-3 is also involved in vertebrate pattern formation, its role was investigated during early Xenopus development. It was found that dominant-negative GSK-3 mutants induced dorsal differentiation, whereas wild-type GSK-3 induced ventralization. These results indicate that GSK-3 is required for ventral differentiation, and suggest that dorsal differentiation may involve the suppression of GSK-3 activity by a wingless/wnt-related signal.
PMID: 7715701
ISSN: 0028-0836
CID: 2365242