Searched for: school:SOM
Department/Unit:Cell Biology
SK channels: a new twist to synaptic plasticity [Comment]
Narasimhan, Kalyani
PMID: 15856059
ISSN: 1097-6256
CID: 4502492
T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis
Cai, Chen-Leng; Zhou, Wenlai; Yang, Lei; Bu, Lei; Qyang, Yibing; Zhang, Xiaoxue; Li, Xiaodong; Rosenfeld, Michael G; Chen, Ju; Evans, Sylvia
Mutations in T-box genes are the cause of several congenital diseases and are implicated in cancer. Tbx20-null mice exhibit severely hypoplastic hearts and express Tbx2, which is normally restricted to outflow tract and atrioventricular canal, throughout the heart. Tbx20 mutant hearts closely resemble those seen in mice overexpressing Tbx2 in myocardium, suggesting that upregulation of Tbx2 can largely account for the cardiac phenotype in Tbx20-null mice. We provide evidence that Tbx2 is a direct target for repression by Tbx20 in developing heart. We have also found that Tbx2 directly binds to the Nmyc1 promoter in developing heart, and can repress expression of the Nmyc1 promoter in transient transfection studies. Repression of Nmyc1 (N-myc) by aberrantly regulated Tbx2 can account in part for the observed cardiac hypoplasia in Tbx20 mutants. Nmyc1 is required for growth and development of multiple organs, including the heart, and overexpression of Nmyc1 is associated with childhood tumors. Despite its clinical relevance, the factors that regulate Nmyc1 expression during development are unknown. Our data present a paradigm by which T-box proteins regulate regional differences in Nmyc1 expression and proliferation to effect organ morphogenesis. We present a model whereby Tbx2 directly represses Nmyc1 in outflow tract and atrioventricular canal of the developing heart, resulting in relatively low proliferation. In chamber myocardium, Tbx20 represses Tbx2, preventing repression of Nmyc1 and resulting in relatively high proliferation. In addition to its role in regulating regional proliferation, we have found that Tbx20 regulates expression of a number of genes that specify regional identity within the heart, thereby coordinating these two important aspects of organ development.
PMCID:5576439
PMID: 15843407
ISSN: 0950-1991
CID: 586662
Induction of Nod1 and Nod2 intracellular pattern recognition receptors in murine osteoblasts following bacterial challenge
Marriott, Ian; Rati, Dana M; McCall, Samuel H; Tranguch, Susanne L
Osteoblasts produce an array of immune molecules following bacterial challenge that could recruit leukocytes to sites of infection and promote inflammation during bone diseases, such as osteomyelitis. Recent studies from our laboratory have shed light on the mechanisms by which this cell type can perceive and respond to bacteria by demonstrating the functional expression of members of the Toll-like family of cell surface pattern recognition receptors by osteoblasts. However, we have shown that bacterial components fail to elicit immune responses comparable with those seen following challenge with the intracellular pathogens salmonellae and Staphylococcus aureus. In the present study, we show that UV-killed bacteria and invasion-defective bacterial strains elicit significantly less inflammatory cytokine production than their viable wild-type counterparts. Importantly, we demonstrate that murine osteoblasts express the novel intracellular pattern recognition receptors Nod1 and Nod2. Levels of mRNA encoding Nod molecules and protein expression are significantly and differentially increased from low basal levels following exposure to these disparate bacterial pathogens. In addition, we have shown that osteoblasts express Rip2 kinase, a critical downstream effector molecule for Nod signaling. Furthermore, to begin to establish the functional nature of Nod expression, we show that a specific ligand for Nod proteins can significantly augment immune molecule production by osteoblasts exposed to either UV-inactivated bacteria or bacterial lipopolysaccharide. As such, the presence of Nod proteins in osteoblasts could represent an important mechanism by which this cell type responds to intracellular bacterial pathogens of bone.
PMCID:1087386
PMID: 15845503
ISSN: 0019-9567
CID: 2157412
Identification of the F1F0 mitochondrial ATPase as a target for modulating skin pigmentation by screening a tagged triazine library in zebrafish
Jung, Da-Woon; Williams, Darren; Khersonsky, Sonya M; Kang, Tae-Wook; Heidary, Noushin; Chang, Young-Tae; Orlow, Seth J
A triazine-based combinatorial library of small molecules was screened in zebrafish to identify compounds that produced interesting phenotypes. One compound (of 1536 screened) induced a dramatic increase in the pigmentation of early stage zebrafish embryos. This compound, PPA, was also found to increase pigmentation in cultured mammalian melanocytes. The cellular target was identified as the mitochondrial F1F0-ATP synthase (ATPase) by affinity chromatography. Oligomycin, a small molecule known to inhibit the mitochondrial ATPase, competed with PPA for its cellular target in melanocytes. In addition, PPA was shown to alter the membrane potential of mitochondria, consistent with inhibition of the mitochondrial ATPase. Thus, PPA has been successfully used as a chemical probe in a forward chemical genetic approach to establish a link between the phenotype and the protein. The results attest to the power of screening small molecule libraries in zebrafish as a means of identifying mammalian targets and suggest the mitochondrial ATPase as a target for modulating pigmentation in both melanocytes and melanoma cells
PMID: 16880968
ISSN: 1742-206x
CID: 96938
Effects of distal cholesterol biosynthesis inhibitors on cell proliferation and cell cycle progression
Fernandez, Carlos; Martin, Miguel; Gomez-Coronado, Diego; Lasuncion, Miguel A
Cholesterol is a major lipid component of the plasma membrane in animal cells. In addition to its structural requirement, cholesterol is essential in cell proliferation and other cell processes. The aim of the present study was to elucidate the stringency of the requirement for cholesterol as a regulator of proliferation and cell cycle progression, compared with other sterols of the cholesterol biosynthesis pathway. Human promyelocytic HL-60 cells were cultured in cholesterol-free medium and treated with different distal inhibitors of cholesterol biosynthesis (zaragozic acid, SKF 104976, SR 31747, BM 15766, and AY 9944), which allow the synthesis of isoprenoid derivatives and different sets of sterol intermediates, but not cholesterol. The results showed that only the inhibition of sterol Delta7-reductase was compatible with cell proliferation. Blocking cholesterol biosynthesis upstream of this enzyme resulted in the inhibition of cell proliferation and cell cycle arrest selectively in G2/M phase
PMID: 15687348
ISSN: 0022-2275
CID: 104335
Atherosclerosis regression is characterized by macrophages altering their phenotype into a dendritic-like state [Meeting Abstract]
Feig, JE; Trogan, E; Mayne, J; Ma, YQ; Dogan, S; Rong, JX; Young, SG; Randolph, GJ; Fisher, EA
ISI:000228806900017
ISSN: 1079-5642
CID: 52642
Assembly of apo100-containing very low density lipoproteins occurs post-endoplasmic reticulum (ER) and may require apoB-100 conformational changes and apoE [Meeting Abstract]
Gusarova, V; Brodsky, JL; Fisher, EA
ISI:000228806900085
ISSN: 1079-5642
CID: 52643
Localization and dynamic behavior of ribosomal protein L30e
Halic, Mario; Becker, Thomas; Frank, Joachim; Spahn, Christian M T; Beckmann, Roland
The ribosomal protein L30e is an indispensable component of the eukaryotic 80S ribosome, where it is part of the large (60S) ribosomal subunit. Here, we determined the localization of L30e in the cryo-EM map of the 80S wheat germ (wg) ribosome at a resolution of 9.5 A. L30e is part of the interface between large and small subunits, where it dynamically participates in the formation of the two intersubunit bridges eB9 and B4
PMID: 15864315
ISSN: 1545-9985
CID: 66310
In vivo and in vitro analysis of the human tissue-type plasminogen activator gene promoter in neuroblastomal cell lines: evidence for a functional upstream kappaB element
Lux, W; Klobeck, H-G; Daniel, P B; Costa, M; Medcalf, R L; Schleuning, W-D
Besides its well-established role in wound healing and fibrinolysis, tissue-type plasminogen activator (t-PA) has been shown to contribute to cognitive processes and memory formation within the central nervous system, and to promote glutamate receptor-mediated excitotoxicity. The t-PA gene is expressed and regulated in neuronal cells but the regulatory transcriptional processes directing this expression are still poorly characterized. We have used DNase I-hypersensitivity mapping and in vivo foot printing to identify putative regulatory elements and transcription factor binding sites in two human neuroblastomal (KELLY and SK-N-SH) and one human glioblastomal (SNB-19) cell lines. Hypersensitive sites were found in the proximal promoter region of all cell lines, and within the first exon for KELLY and SNB-19 cells. Mapping of methylation-protected residues in vivo detected a cluster of protected residues corresponding to a cAMP response element (CRE) and Sp1 sites in the proximal promoter previously shown to be essential for basal expression in other cell types. Protected residues were also found at other sites, notably a kappaB element at position bp -3081 to -3072 that was partly protected in KELLY and SNB-19 cells. Analysis of transfected reporter constructs in KELLY and SNB-19 cells confirmed that this particular element is functionally significant in the transactivation of the t-PA promoter in both cell types. This study defines, by in vivo and in vitro methods, a previously undescribed kappaB site in the t-PA gene promoter that influences t-PA expression in neuronal cells.
PMID: 15869598
ISSN: 1538-7836
CID: 171777
Melanocytic proliferations in the setting of vulvar lichen sclerosus: diagnostic considerations [Letter]
Schaffer, Julie V; Orlow, Seth J
PMID: 15916584
ISSN: 0736-8046
CID: 114479