Searched for: school:SOM
Department/Unit:Cell Biology
Homing to Hypoxia: HIF-1 as a Mediator of Progenitor Cell Recruitment to Injured Tissue
Ceradini, Daniel J; Gurtner, Geoffrey C
The identification of bone marrow-derived endothelial progenitor cells has altered our understanding of new blood vessel growth and tissue regeneration. Previously, new blood vessel growth in the adult was thought to only occur through angiogenesis, the sprouting of new vessels from existing structures. However, it has become clear that circulating bone marrow-derived cells can form new blood vessels through a process of postnatal vasculogenesis, with endothelial progenitor cells selectively recruited to injured or ischemic tissue. How this process occurs has remained unclear. One common element in the different environments where vasculogenesis is believed to occur is the presence of a hypoxic stimulus. We have identified the chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 as critical mediators for the ischemia-specific recruitment of circulating progenitor cells. We have found that the endothelial expression of SDF-1 acts as a signal indicating the presence of tissue ischemia, and that its expression is directly regulated by hypoxia-inducible factor-1. Stromal cell-derived factor 1 is the only chemokine family member known to be regulated in this manner. Later events, including proliferation, patterning, and assembly of recruited progenitors into functional blood vessels, are also influenced by tissue oxygen tension and hypoxia. Interestingly, both SDF-1 and hypoxia are present in the bone marrow niche, suggesting that hypoxia may be a fundamental requirement for progenitor cell trafficking and function. As such, ischemic tissue may represent a conditional stem cell niche, with recruitment and retention of circulating progenitors regulated by hypoxia through differential expression of SDF-1
PMID: 15885571
ISSN: 1050-1738
CID: 55596
Contribution of high p34cdc2 kinase activity to premature chromosome condensation of injected somatic cell nuclei in rat oocytes
Ito, Junya; Hirabayashi, Masumi; Kato, Megumi; Takeuchi, Ayumu; Ito, Mayumi; Shimada, Masayuki; Hochi, Shinichi
The present study was undertaken to clarify the relationship between the p34cdc2 kinase activity of in vitro-aged or enucleated rat oocytes and the premature chromosome condensation (PCC) of microinjected cumulus cell nuclei. Wistar rat oocytes were placed in vitro up to 120 min after the animal was killed. The p34cdc2 kinase activity of the oocytes decreased in a time-dependent manner. The incidence of PCC was higher when nuclear injection into intact oocytes was completed in 15-45 min rather than 46-120 min. When rat oocytes were enucleated for subsequent nuclear injection, the p34cdc2 kinase activity transiently increased soon after enucleation but drastically decreased after 30 min. Removal of the cytoplasm instead of the meta-phase-plate did not affect the p34cdc2 kinase activity even after 60 min. PCC occurred in intact and cytoplasm-removed oocytes but not in enucleated oocytes. In contrast, oocytes from BDF1 mice exhibited a p34cdc2 kinase level twice that of rat oocytes and supported PCC despite enucleation. The p34cdc2 kinase level of intact rat oocytes was reduced to the equivalent level of aged (120 min) or enucleated (+60 min) oocytes by a 45 min treatment with roscovitine, an inhibitor of p34cdc2 kinase. None of the roscovitine-treated oocytes supported PCC while half of the control oocytes did. When rat oocytes were treated with MG132, a proteasome inhibitor, delayed inactivation of the p34cdc2 kinase was observed in the MG132-treated oocytes. A significantly higher proportion of the MG132-treated oocytes supported PCC when compared with the control oocytes. Moreover, a higher proportion of MG132-treated and enucleated oocytes carried two pseudo-pronuclei after cumulus cell injection and developed to the two-cell stage when compared with the enucleated oocytes at the telophase-II stage. These results suggest that the decreased level of p34cdc2 kinase activity in aged or enucleated rat oocytes is responsible for their inability to support PCC of microinjected donor cell nuclei and that inhibition of p34cdc2 kinase inactivation by chemicals such as MG132 is in part effective for rat oocytes to promote PCC and further development
PMID: 15695611
ISSN: 1470-1626
CID: 81133
In vivo inhibition of endogenous brain tumors through systemic interference of Hedgehog signaling in mice
Sanchez, Pilar; Ruiz i Altaba, Ariel
The full spectrum of developmental potential includes normal as well as abnormal and disease states. We therefore subscribe to the idea that tumors derive from the operation of paradevelopmental programs that yield consistent and recognizable morphologies. Work in frogs and mice shows that Hedgehog (Hh)-Gli signaling controls stem cell lineages and that its deregulation leads to tumor formation. Moreover, human tumor cells require sustained Hh-Gli signaling for proliferation as cyclopamine, an alkaloid of the lily Veratrum californicum that blocks the Hh pathway, inhibits the growth of different tumor cells in vitro as well as in subcutaneous xenografts. However, the evidence that systemic treatment is an effective anti-cancer therapy is missing. Here we have used Ptc1(+/-); p53(-/-) mice which develop medulloblastoma to test the ability of cyclopamine to inhibit endogenous tumor growth in vivo after tumor initiation through intraperitoneal delivery, which avoids the brain damage associated with direct injection. We find that systemic cyclopamine administration improves the health of Ptc1(+/-);p53(-/-) animals. Analyses of the cerebella of cyclopamine-treated animals show a severe reduction in tumor size and a large decrease in the number of Ptc1-expressing cells, as a readout of cells with an active Hu-Gli pathway, as well as an impairment of their proliferative capacity, always in comparison with vehicle treated mice. Our data demonstrate that systemic treatment with cyclopamine inhibits tumor growth in the brain supporting its therapeutical value for human HH-dependent tumors. They also demonstrate that even the complete loss of the well-known tumor suppressor p53 does not render the tumor independent of Hh pathway function
PMID: 15652709
ISSN: 0925-4773
CID: 56194
PAR proteins and the establishment of cell polarity during C. elegans development
Nance, Jeremy
Cells become polarized to develop functional specializations and to distribute developmental determinants unequally during division. Studies that began in the nematode C. elegans have identified a group of largely conserved proteins, called PAR proteins, that play key roles in the polarization of many different cell types. During initial stages of cell polarization, certain PAR proteins become distributed asymmetrically along the cell cortex and subsequently direct the localization and/or activity of other proteins. Here I discuss recent findings on how PAR proteins become and remain asymmetric in three different contexts during C. elegans development: anterior-posterior polarization of the one-cell embryo, apicobasal polarization of non-epithelial early embryonic cells, and apicobasal polarization of epithelial cells. Although polarity within each of these cell types requires PAR proteins, the cues and regulators of PAR asymmetry can differ
PMID: 15666355
ISSN: 0265-9247
CID: 72052
Treatment of children and adolescents with methotrexate, cyclosporine, and etanercept: review of the dermatologic and rheumatologic literature
Dadlani, Chicky; Orlow, Seth J
PMID: 15692480
ISSN: 1097-6787
CID: 49630
The interferon-inducible p204 protein acts as a transcriptional coactivator of Cbfa1 and enhances osteoblast differentiation
Liu, Chuan-Ju; Chang, Eric; Yu, Jin; Carlson, Cathy S; Prazak, Lisa; Yu, Xiu-Ping; Ding, Bo; Lengyel, Peter; Di Cesare, Paul E
The differentiation of uncommitted mesenchymal cells into osteoblasts is a fundamental molecular event governing both embryonic development and bone repair. The bone morphogenetic proteins (BMPs) are important regulators of this process; they function by binding to cell surface receptors and signaling by means of Smad proteins. Core binding factor alpha-1 (Cbfa1), a member of the runt family of transcription factors, is an essential transcriptional regulator of osteoblast differentiation and bone formation, and this process is positively or negatively regulated by a variety of coactivators and corepressors. We report that p204, an interferon-inducible protein that was previously shown to inhibit cell proliferation and promote the differentiation of myoblasts to myotubes, is a novel regulator in the course of osteogenesis. p204 is expressed in embryonic osteoblasts and hypertrophic chondrocytes in the growth plate as well as in the calvaria osteoblasts of neonatal mice. Its level is increased in the course of the BMP-2-triggered osteoblast differentiation of pluripotent C2C12 cells. This increase is probably due to the activation of the gene encoding 204 (Ifi204) by Smad transcription factor, including Smad1, -4, and -5. Overexpression of p204 enhances the BMP-2-induced osteoblast differentiation in vitro, as revealed by elevated alkaline phosphatase activity and osteocalcin production. p204 acts as a cofactor of Cbfa1: 1) high levels of p204 augment, whereas the lowering of p204 level decreases, the Cbfa1-dependent transcription, and 2) p204 associates with Cbfa1 both in vitro and in vivo. Two nonoverlapping segments in p204 bind to Cbfa1, and the N-terminal 88-amino acid segment of Cbfa1 is required for binding to p204. p204, which is the first interferon-inducible protein found to associate with Cbfa1, functions as a novel regulator of osteoblast differentiation
PMID: 15557274
ISSN: 0021-9258
CID: 48999
Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling
Tyurina, Oksana V; Guner, Burcu; Popova, Evgenya; Feng, Jianchi; Schier, Alexander F; Kohtz, Jhumku D; Karlstrom, Rolf O
Hedgehog (Hh) signaling regulates cell differentiation and patterning in a wide variety of embryonic tissues. In vertebrates, at least three Gli transcription factors (Gli1, Gli2, and Gli3) are involved in Hh signal transduction. Comparative studies have revealed divergent requirements for Gli1 and Gli2 in zebrafish and mouse. Here, we address the question of whether Gli3 function has also diverged in zebrafish and analyze the regulatory interactions between Hh signaling and Gli activity. We find that zebrafish Gli3 has an early function as an activator of Hh target genes that overlaps with Gli1 activator function in the ventral neural tube. In vitro reporter analysis shows that Gli3 cooperates with Gli1 to activate transcription in the presence of high concentrations of Hh. During late somitogenesis stages, Gli3 is required as a repressor of the Hh response. Gli3 shares this repressor activity with Gli2 in the dorsal spinal cord, hindbrain, and midbrain, but not in the forebrain. Consistently, zebrafish Gli3 blocks Gli1-mediated activation of a reporter gene in the absence of Hh in vitro. In the eye, Gli3 is also required for proper ath5 expression and the differentiation of retinal ganglion cells (RGCs). These results reveal a conserved role for Gli3 in vertebrate development and uncover novel regional functions and regulatory interactions among gli genes.
PMID: 15617692
ISSN: 0012-1606
CID: 877122
Retinoic acid signaling restricts the cardiac progenitor pool
Keegan, Brian R; Feldman, Jessica L; Begemann, Gerrit; Ingham, Philip W; Yelon, Deborah
Organogenesis begins with specification of a progenitor cell population, the size of which provides a foundation for the organ's final dimensions. Here, we present a new mechanism for regulating the number of progenitor cells by limiting their density within a competent region. We demonstrate that retinoic acid signaling restricts cardiac specification in the zebrafish embryo. Reduction of retinoic acid signaling causes formation of an excess of cardiomyocytes, via fate transformations that increase cardiac progenitor density within a multipotential zone. Thus, retinoic acid signaling creates a balance between cardiac and noncardiac identities, thereby refining the dimensions of the cardiac progenitor pool
PMID: 15653502
ISSN: 1095-9203
CID: 68196
Nodal stability determines signaling range
Le Good, J Ann; Joubin, Katherine; Giraldez, Antonio J; Ben-Haim, Nadav; Beck, Severine; Chen, Yu; Schier, Alexander F; Constam, Daniel B
Secreted TGFbeta proteins of the Nodal family pattern the vertebrate body axes and induce mesoderm and endoderm . Nodal proteins can act as morphogens , but the mechanisms regulating their activity and signaling range are poorly understood. In particular, it has been unclear how inefficient processing or rapid turnover of the Nodal protein influences autocrine and paracrine signaling properties . Here, we evaluate the role of Nodal processing and stability in tissue culture and zebrafish embryos. Removal of the pro domain potentiates autocrine signaling but reduces Nodal stability and signaling range. Insertion of an N-glycosylation site present in several related TGFbeta proteins increases the stability of mature Nodal. The stabilized form of Nodal acts at a longer range than the wild-type form. These results suggest that increased proteolytic maturation of Nodal potentiates autocrine signaling, whereas increased Nodal stability extends paracrine signaling
PMID: 15649361
ISSN: 0960-9822
CID: 61158
Drosophila fear of intimacy encodes a Zrt/IRT-like protein (ZIP) family zinc transporter functionally related to mammalian ZIP proteins
Mathews, Wendy R; Wang, Fudi; Eide, David J; Van Doren, Mark
Zinc is essential for many cellular processes, and its concentration in the cell must be tightly controlled. The Zrt/IRT-like protein (ZIP) family of zinc transporters have recently been identified as the main regulators of zinc influx into the cytoplasm; however, little is known about their in vivo roles. Previously, we have shown that fear of intimacy (foi) encodes a putative member of the ZIP family that is essential for development in Drosophila. Here we demonstrate that FOI can act as an ion transporter in both yeast and mammalian cell assays and is specific for zinc. We also provide insight into the mechanism of action of the ZIP family through membrane topology and structure-function analyses of FOI. Our work demonstrates that Drosophila FOI is closely related to mammalian ZIP proteins at the functional level and that Drosophila represents an ideal system for understanding the in vivo roles of this family. In addition, this work indicates that the control of zinc by ZIP transporters may play a critical role in regulating developmental processes.
PMID: 15509557
ISSN: 0021-9258
CID: 2206272