Searched for: school:SOM
Department/Unit:Cell Biology
The interferon-inducible p204 protein acts as a transcriptional coactivator of Cbfa1 and enhances osteoblast differentiation
Liu, Chuan-Ju; Chang, Eric; Yu, Jin; Carlson, Cathy S; Prazak, Lisa; Yu, Xiu-Ping; Ding, Bo; Lengyel, Peter; Di Cesare, Paul E
The differentiation of uncommitted mesenchymal cells into osteoblasts is a fundamental molecular event governing both embryonic development and bone repair. The bone morphogenetic proteins (BMPs) are important regulators of this process; they function by binding to cell surface receptors and signaling by means of Smad proteins. Core binding factor alpha-1 (Cbfa1), a member of the runt family of transcription factors, is an essential transcriptional regulator of osteoblast differentiation and bone formation, and this process is positively or negatively regulated by a variety of coactivators and corepressors. We report that p204, an interferon-inducible protein that was previously shown to inhibit cell proliferation and promote the differentiation of myoblasts to myotubes, is a novel regulator in the course of osteogenesis. p204 is expressed in embryonic osteoblasts and hypertrophic chondrocytes in the growth plate as well as in the calvaria osteoblasts of neonatal mice. Its level is increased in the course of the BMP-2-triggered osteoblast differentiation of pluripotent C2C12 cells. This increase is probably due to the activation of the gene encoding 204 (Ifi204) by Smad transcription factor, including Smad1, -4, and -5. Overexpression of p204 enhances the BMP-2-induced osteoblast differentiation in vitro, as revealed by elevated alkaline phosphatase activity and osteocalcin production. p204 acts as a cofactor of Cbfa1: 1) high levels of p204 augment, whereas the lowering of p204 level decreases, the Cbfa1-dependent transcription, and 2) p204 associates with Cbfa1 both in vitro and in vivo. Two nonoverlapping segments in p204 bind to Cbfa1, and the N-terminal 88-amino acid segment of Cbfa1 is required for binding to p204. p204, which is the first interferon-inducible protein found to associate with Cbfa1, functions as a novel regulator of osteoblast differentiation
PMID: 15557274
ISSN: 0021-9258
CID: 48999
Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling
Tyurina, Oksana V; Guner, Burcu; Popova, Evgenya; Feng, Jianchi; Schier, Alexander F; Kohtz, Jhumku D; Karlstrom, Rolf O
Hedgehog (Hh) signaling regulates cell differentiation and patterning in a wide variety of embryonic tissues. In vertebrates, at least three Gli transcription factors (Gli1, Gli2, and Gli3) are involved in Hh signal transduction. Comparative studies have revealed divergent requirements for Gli1 and Gli2 in zebrafish and mouse. Here, we address the question of whether Gli3 function has also diverged in zebrafish and analyze the regulatory interactions between Hh signaling and Gli activity. We find that zebrafish Gli3 has an early function as an activator of Hh target genes that overlaps with Gli1 activator function in the ventral neural tube. In vitro reporter analysis shows that Gli3 cooperates with Gli1 to activate transcription in the presence of high concentrations of Hh. During late somitogenesis stages, Gli3 is required as a repressor of the Hh response. Gli3 shares this repressor activity with Gli2 in the dorsal spinal cord, hindbrain, and midbrain, but not in the forebrain. Consistently, zebrafish Gli3 blocks Gli1-mediated activation of a reporter gene in the absence of Hh in vitro. In the eye, Gli3 is also required for proper ath5 expression and the differentiation of retinal ganglion cells (RGCs). These results reveal a conserved role for Gli3 in vertebrate development and uncover novel regional functions and regulatory interactions among gli genes.
PMID: 15617692
ISSN: 0012-1606
CID: 877122
Retinoic acid signaling restricts the cardiac progenitor pool
Keegan, Brian R; Feldman, Jessica L; Begemann, Gerrit; Ingham, Philip W; Yelon, Deborah
Organogenesis begins with specification of a progenitor cell population, the size of which provides a foundation for the organ's final dimensions. Here, we present a new mechanism for regulating the number of progenitor cells by limiting their density within a competent region. We demonstrate that retinoic acid signaling restricts cardiac specification in the zebrafish embryo. Reduction of retinoic acid signaling causes formation of an excess of cardiomyocytes, via fate transformations that increase cardiac progenitor density within a multipotential zone. Thus, retinoic acid signaling creates a balance between cardiac and noncardiac identities, thereby refining the dimensions of the cardiac progenitor pool
PMID: 15653502
ISSN: 1095-9203
CID: 68196
Nodal stability determines signaling range
Le Good, J Ann; Joubin, Katherine; Giraldez, Antonio J; Ben-Haim, Nadav; Beck, Severine; Chen, Yu; Schier, Alexander F; Constam, Daniel B
Secreted TGFbeta proteins of the Nodal family pattern the vertebrate body axes and induce mesoderm and endoderm . Nodal proteins can act as morphogens , but the mechanisms regulating their activity and signaling range are poorly understood. In particular, it has been unclear how inefficient processing or rapid turnover of the Nodal protein influences autocrine and paracrine signaling properties . Here, we evaluate the role of Nodal processing and stability in tissue culture and zebrafish embryos. Removal of the pro domain potentiates autocrine signaling but reduces Nodal stability and signaling range. Insertion of an N-glycosylation site present in several related TGFbeta proteins increases the stability of mature Nodal. The stabilized form of Nodal acts at a longer range than the wild-type form. These results suggest that increased proteolytic maturation of Nodal potentiates autocrine signaling, whereas increased Nodal stability extends paracrine signaling
PMID: 15649361
ISSN: 0960-9822
CID: 61158
Amino acid requirements for formation of the TGF-beta-latent TGF-beta binding protein complexes
Chen, Yan; Ali, Tariq; Todorovic, Vesna; O'leary, Joanne M; Kristina Downing, A; Rifkin, Daniel B
Transforming growth factor beta (TGF-beta) is secreted primarily as a latent complex consisting of the TGF-beta homodimer, the TGF-beta propeptides (called the latency-associated protein or LAP) and the latent TGF-beta binding protein (LTBP). Mature TGF-beta remains associated with LAP by non-covalent interactions that block TGF-beta from binding to its receptor. Complex formation between LAP and LTBP is mediated by an intramolecular disulfide exchange between the third 8-cysteine (8-Cys3) domain of LTBP with a pair of cysteine residues in LAP. Only the third 8-Cys domains of LTBP-1, -3, and -4 bind LAP. From comparison of the 8-Cys3(LTBP-1) structure with that of the non-TGF-beta-binding 8-Cys6(fibrillin-1), we observed that a two-residue insertion in 8-Cys3(LTBP-1) increased the potential for disulfide exchange of the 2-6 disulfide bond. We further proposed that five negatively charged amino acid residues surrounding this bond mediate initial protein-protein association. To validate this hypothesis, we monitored binding by fluorescence resonance energy transfer (FRET) analysis and co-expression assays with TGF-beta1 LAP (LAP-1) and wild-type and mutant 8-Cys3 domains. FRET experiments demonstrated ionic interactions between LAP-1 and 8-Cys3. Mutation of the five amino acid residues revealed that efficient complex formation is most dependent on two of these residues. Although 8-Cys3(LTBP-1) binds proTGF-betas effectively, the domain from LTBP-4 does so poorly. We speculated that this difference was due to the substitution of three acidic residues by alanine, serine, and arginine in the LTBP-4 sequence. Additional experiments with 8-Cys3(LTBP-4) indicated that enhanced binding of LAP to 8-Cys3(LTBP-4) is achieved if the residues A, S, and R are changed to those in 8-Cys3(LTBP1) (D, D, and E) and the QQ dipeptide insertion of LTBP-4 is changed to the FP in 8-Cys3(LTBP-1). These studies identify surface residues that contribute to the interactions of 8-Cys3 and LAP-1 and may yield information germane to the interaction of 8-Cys domains and additional TGF-beta superfamily propeptides, an emerging paradigm for growth factor regulation
PMID: 15567420
ISSN: 0022-2836
CID: 48106
Drosophila fear of intimacy encodes a Zrt/IRT-like protein (ZIP) family zinc transporter functionally related to mammalian ZIP proteins
Mathews, Wendy R; Wang, Fudi; Eide, David J; Van Doren, Mark
Zinc is essential for many cellular processes, and its concentration in the cell must be tightly controlled. The Zrt/IRT-like protein (ZIP) family of zinc transporters have recently been identified as the main regulators of zinc influx into the cytoplasm; however, little is known about their in vivo roles. Previously, we have shown that fear of intimacy (foi) encodes a putative member of the ZIP family that is essential for development in Drosophila. Here we demonstrate that FOI can act as an ion transporter in both yeast and mammalian cell assays and is specific for zinc. We also provide insight into the mechanism of action of the ZIP family through membrane topology and structure-function analyses of FOI. Our work demonstrates that Drosophila FOI is closely related to mammalian ZIP proteins at the functional level and that Drosophila represents an ideal system for understanding the in vivo roles of this family. In addition, this work indicates that the control of zinc by ZIP transporters may play a critical role in regulating developmental processes.
PMID: 15509557
ISSN: 0021-9258
CID: 2206272
Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping
Sgaier, Sema K; Millet, Sandrine; Villanueva, Melissa P; Berenshteyn, Frada; Song, Christian; Joyner, Alexandra L
We used the cerebellum as a model to study the morphogenetic and cellular processes underlying the formation of elaborate brain structures from a simple neural tube, using an inducible genetic fate mapping approach in mouse. We demonstrate how a 90 degrees rotation between embryonic days 9 and 12 converts the rostral-caudal axis of dorsal rhombomere 1 into the medial-lateral axis of the wing-like bilateral cerebellar primordium. With the appropriate use of promoters, we marked specific medial-lateral domains of the cerebellar primordium and derived a positional fate map of the murine cerebellum. We show that the adult medial cerebellum is produced by expansion, rather than fusion, of the thin medial primordium. Furthermore, ventricular-derived cells maintain their original medial-lateral coordinates into the adult, whereas rhombic lip-derived granule cells undergo lateral to medial posterior transverse migrations during foliation. Thus, we show that progressive changes in the axes of the cerebellum underlie its genesis
PMID: 15629700
ISSN: 0896-6273
CID: 49007
Antibody to avb6 integrin prevents radiation-induced lung fibrosis [Meeting Abstract]
Formenti, SC; Jacoby, S; Grant, K; Horan, G; Weinreb; Devitt, M; Munger, J
ISI:000232083301317
ISSN: 0360-3016
CID: 109266
Beta-catenin induces a population of radio-resistant alveolar stem/progenitors that progress to form hormone-independent breast tumors in mice [Meeting Abstract]
Formenti, SC; Hiremath, M; Yang, A; Demaria, S; Cowin, P
ISI:000232083301305
ISSN: 0360-3016
CID: 109265
A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration
Masuda, Koichi; Aota, Yoichi; Muehleman, Carol; Imai, Yoshiyuki; Okuma, Masahiko; Thonar, Eugene J; Andersson, Gunnar B; An, Howard S
STUDY DESIGN: An in vivo study to radiographically and histologically assess a new method of induction of disc degeneration. OBJECTIVE.: To establish a reproducible rabbit model of disc degeneration by puncturing the anulus with needles of defined gauges and to compare it to the classic stab model. SUMMARY OF BACKGROUND DATA: New treatment approaches to disc degeneration are of great interest. Although animal models for disc degenerative disease exist, the quantitative measurement of disease progression remains difficult. A reproducible, progressive disc degeneration model, which can be induced in a reasonable time frame, is essential for development of new therapeutic interventions. METHODS: The classic anular stab model and the new needle puncture model were used in the rabbit. For the needle puncture model, 3 different gauges of needle (16G, 18G, and 21G) were used to induce an injury to the disc to a depth of 5 mm. Radiographic and histologic analyses were performed; magnetic resonance images were also assessed in the needle puncture model. RESULTS: Significant disc space narrowing was observed as early as 2 weeks after stabbing in the classic stab model; there was no further narrowing of the disc space. In the needle puncture model, all needle sizes tested induced a slower and more progressive decrease in disc height than in the classic stab model. The magnetic resonance imaging supported the results of disc height data. CONCLUSIONS: The needle puncture approach, using 16G to 21G needles, resulted in a reproducible decrease of disc height and magnetic resonance imaging grade. The ease of the procedure and transfer of the methodology will benefit researchers studying disc degeneration.
PMID: 15626974
ISSN: 1528-1159
CID: 2164182