Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14085


Regulation of tyrosine hydroxylase gene transcription by Sry

Milsted, Amy; Serova, Lidia; Sabban, Esther L; Dunphy, Gail; Turner, Monte E; Ely, Daniel L
Testes determining factor Sry is encoded by the Sry locus on the Y chromosome and may be involved in the regulation of blood pressure. Here we tested the hypothesis that Sry regulates transcription of tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines. Sry was found to be expressed in catecholaminergic regions, in male but not female rats. Co-transfection of PC12 cells with expression vector for Sry and the reporter construct [p5'TH(-773/+27)/Luc], containing 773 of the proximal nucleotides of the TH promoter directing luciferase reporter activity, led to elevation of reporter activity. The reporter activity of a shorter construct [p5'TH(-272/+27)/Luc] lacking putative Sry sites also responded to Sry. However, mutation of the AP1 site in the TH promoter greatly reduced induction by Sry, indicating that the regulation is primarily at this motif. The remaining, significantly increased expression with the mutated TH promoter construct may reflect Sry function at other sites in addition to the AP1 motif. These results reveal that Sry can regulate TH transcription and suggest that this may be one of the mechanisms of Sry mediated regulation of catecholamine biosynthesis in catecholaminergic neurons in males.
PMID: 15464265
ISSN: 0304-3940
CID: 606832

"Structural basis for substrate translocation of the escherichia coli glycerol-3-phosphate transporter, GlpT" [Meeting Abstract]

Lemieux, MJ; Huang, YF; Song, JM; Auer, M; Wang, DN
ISI:000223500600051
ISSN: 0005-2728
CID: 46475

Two Drosophila suppressors of cytokine signaling (SOCS) differentially regulate JAK and EGFR pathway activities

Rawlings, Jason S; Rennebeck, Gabriela; Harrison, Susan M W; Xi, Rongwen; Harrison, Douglas A
BACKGROUND: The Janus kinase (JAK) cascade is an essential and well-conserved pathway required to transduce signals for a variety of ligands in both vertebrates and invertebrates. While activation of the pathway is essential to many processes, mutations from mammals and Drosophila demonstrate that regulation is also critical. The SOCS (Suppressor Of Cytokine Signaling) proteins in mammals are regulators of the JAK pathway that participate in a negative feedback loop, as they are transcriptionally activated by JAK signaling. Examination of one Drosophila SOCS homologue, Socs36E, demonstrated that its expression is responsive to JAK pathway activity and it is capable of downregulating JAK signaling, similar to the well characterized mammalian SOCS. RESULTS: Based on sequence analysis of the Drosophila genome, there are three identifiable SOCS homologues in flies. All three are most similar to mammalian SOCS that have not been extensively characterized: Socs36E is most similar to mammalian SOCS5, while Socs44A and Socs16D are most similar to mammalian SOCS6 and 7. Although Socs44A is capable of repressing JAK activity in some tissues, its expression is not regulated by the pathway. Furthermore, Socs44A can enhance the activity of the EGFR/MAPK signaling cascade, in contrast to Socs36E. CONCLUSIONS: Two Drosophila SOCS proteins have some overlapping and some distinct capabilities. While Socs36E behaves similarly to the canonical vertebrate SOCS, Socs44A is not part of a JAK pathway negative feedback loop. Nonetheless, both SOCS regulate JAK and EGFR signaling pathways, albeit differently. The non-canonical properties of Socs44A may be representative of the class of less characterized vertebrate SOCS with which it shares greatest similarity.
PMCID:526380
PMID: 15488148
ISSN: 1471-2121
CID: 2450792

Ternary complex with Trk, p75, and an ankyrin-rich membrane spanning protein

Chang, Mi-Sook; Arevalo, Juan Carlos; Chao, Moses V
Neurotrophins play many critical roles in regulating neuronal plasticity, survival, and differentiation in the nervous system. Neurotrophins recognize two different receptors, the Trk receptor tyrosine kinase and the p75 neurotrophin receptor, which are associated closely. Several adaptor proteins are associated with each receptor. An ankyrin-rich membrane spanning protein (ARMS), originally identified as a substrate for protein kinase D (Kidins220) and as a p75 interacting protein, serves as a novel downstream target of Trk receptor tyrosine kinases. Kidins220/ARMS is co-expressed frequently with Trk and p75 and represents the only membrane-associated protein known to interact with both receptors. We report here that a ternary complex can be formed between Trk, p75, and Kidins220/ARMS. The extracellular domains of the TrkA and the p75 receptors are necessary for their association, whereas the juxtamembrane region of p75 was responsible for the interaction with Kidins220/ARMS. Interestingly, increasing the level of Kidins220/ARMS expression resulted in a decreased association of TrkA with p75. These findings thus suggest that Kidins220/ARMS plays an important role in regulating interactions between Trk and p75 neurotrophin receptors
PMID: 15378608
ISSN: 0360-4012
CID: 46461

Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation

Fernandez, Carlos; Lobo Md, Maria del Val T; Gomez-Coronado, Diego; Lasuncion, Miguel A
As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14alpha-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells
PMID: 15383319
ISSN: 0014-4827
CID: 104340

A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila

Suh, Greg S B; Wong, Allan M; Hergarden, Anne C; Wang, Jing W; Simon, Anne F; Benzer, Seymour; Axel, Richard; Anderson, David J
All animals exhibit innate behaviours in response to specific sensory stimuli that are likely to result from the activation of developmentally programmed neural circuits. Here we observe that Drosophila exhibit robust avoidance to odours released by stressed flies. Gas chromatography and mass spectrometry identifies one component of this 'Drosophila stress odorant (dSO)' as CO2. CO2 elicits avoidance behaviour, at levels as low as 0.1%. We used two-photon imaging with the Ca2+-sensitive fluorescent protein G-CaMP to map the primary sensory neurons governing avoidance to CO2. CO2 activates only a single glomerulus in the antennal lobe, the V glomerulus; moreover, this glomerulus is not activated by any of 26 other odorants tested. Inhibition of synaptic transmission in sensory neurons that innervate the V glomerulus, using a temperature-sensitive Shibire gene (Shi(ts)), blocks the avoidance response to CO2. Inhibition of synaptic release in the vast majority of other olfactory receptor neurons has no effect on this behaviour. These data demonstrate that the activation of a single population of sensory neurons innervating one glomerulus is responsible for an innate avoidance behaviour in Drosophila
PMID: 15372051
ISSN: 1476-4687
CID: 74620

Characterization of an endogenous retrovirus class in elephants and their relatives

Greenwood, Alex D; Englbrecht, Claudia C; MacPhee, Ross D E
BACKGROUND: Endogenous retrovirus-like elements (ERV-Ls, primed with tRNA leucine) are a diverse group of reiterated sequences related to foamy viruses and widely distributed among mammals. As shown in previous investigations, in many primates and rodents this class of elements has remained transpositionally active, as reflected by increased copy number and high sequence diversity within and among taxa. RESULTS: Here we examine whether proviral-like sequences may be suitable molecular probes for investigating the phylogeny of groups known to have high element diversity. As a test we characterized ERV-Ls occurring in a sample of extant members of superorder Uranotheria (Asian and African elephants, manatees, and hyraxes). The ERV-L complement in this group is even more diverse than previously suspected, and there is sequence evidence for active expansion, particularly in elephantids. Many of the elements characterized have protein coding potential suggestive of activity. CONCLUSIONS: In general, the evidence supports the hypothesis that the complement had a single origin within basal Uranotheria
PMCID:524511
PMID: 15476555
ISSN: 1471-2148
CID: 129242

Membrane biogenesis and the unfolded protein response [Comment]

Ron, David; Hampton, Randolph Y
In addition to serving as the entry point for newly translated polypeptides making their way through the secretory pathway, the endoplasmic reticulum (ER) also synthesizes many lipid components of the entire endomembrane system. A report published in this issue implicates a signaling pathway known to respond to ER unfolded protein load in the control of phospholipid biosynthesis by the organelle (Sriburi et al., 2004). The reasonable notion that demand for ER membrane is integrated with protein processing capacity was initially suggested by genetic analysis of yeast. The new data lend direct support for this idea and imply interesting mechanistic possibilities for how this coupling develops
PMCID:2172515
PMID: 15479733
ISSN: 0021-9525
CID: 45316

Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response

Lu, Phoebe D; Harding, Heather P; Ron, David
Stress-induced eukaryotic translation initiation factor 2 (eIF2) alpha phosphorylation paradoxically increases translation of the metazoan activating transcription factor 4 (ATF4), activating the integrated stress response (ISR), a pro-survival gene expression program. Previous studies implicated the 5' end of the ATF4 mRNA, with its two conserved upstream ORFs (uORFs), in this translational regulation. Here, we report on mutation analysis of the ATF4 mRNA which revealed that scanning ribosomes initiate translation efficiently at both uORFs and ribosomes that had translated uORF1 efficiently reinitiate translation at downstream AUGs. In unstressed cells, low levels of eIF2alpha phosphorylation favor early capacitation of such reinitiating ribosomes directing them to the inhibitory uORF2, which precludes subsequent translation of ATF4 and represses the ISR. In stressed cells high levels of eIF2alpha phosphorylation delays ribosome capacitation and favors reinitiation at ATF4 over the inhibitory uORF2. These features are common to regulated translation of GCN4 in yeast. The metazoan ISR thus resembles the yeast general control response both in its target genes and its mechanistic details
PMCID:2172506
PMID: 15479734
ISSN: 0021-9525
CID: 45315

Detection of circulating cancer cells expressing uroplakins and epidermal growth factor receptor in bladder cancer patients

Osman, Iman; Kang, Melissa; Lee, Andy; Deng, Fang-Ming; Polsky, David; Mikhail, Maryann; Chang, Caroline; David, Dexter A; Mitra, Nandita; Wu, Xue-Ru; Sun, Tung-Tien; Bajorin, Dean F
Our purpose was to determine the clinical relevance of the detection of circulating tumor cells (CTCs) expressing urothelial and epithelial markers in bladder cancer patients. Sixty-two patients who presented to Memorial Sloan-Kettering Cancer Center between July 2000 and September 2001 were studied. Peripheral blood was tested by nested RT-PCR assay for uroplakins (UPs) Ia, Ib, II and III as well as for epidermal growth factor receptor (EGFR). We determined the sensitivity and specificity of each individual marker and the combinations of UPIa/UPII and UPIb/UPIII. The latter strategy was based on our data, which showed that UPIa and UPIb form heterodimers with UPII and UPIII, respectively. Forty patients had clinically advanced bladder cancer and 22 had no evidence of disease at the time of assay. Eight of the 22 patients recurred during the follow-up period. All 8 patients were positive at presentation for UPIa/UPII. The combination of UPIa/UPII provided the best sensitivity (75%) of detecting CTCs, with a specificity of 50%. The combination of UPIb/UPIII was the most specific (79%) but had modest sensitivity (31%). Detection of EGFR-positive cells alone and in combination with UPs was inferior to that for UPIa/UPII. Combinations of urothelial markers are superior to single urothelial or epithelial markers in detecting CTCs in bladder cancer patients. Further efforts are under way to confirm the potential predictive value of these markers in a prospectively designed study of a larger cohort of patients.
PMID: 15300806
ISSN: 0020-7136
CID: 44185