Searched for: school:SOM
Department/Unit:Neuroscience Institute
Lipid metabolism in phosphatidylinositol transfer protein alpha-deficient vibrator mice
Monaco, Marie E; Kim, James; Ruan, WeiFeng; Wieczorek, Rosemary; Kleinberg, David L; Walden, Paul D
Mice that are homozygous for the vibrator mutation express 65-85% less phosphatidylinositol transfer protein alpha (PITPalpha) than their wild type litter mates. By postnatal day 10-12 (P10-12) they exhibit signs of neurodegeneration and die prematurely by P40. In the present study, we examine the lipid content of brain, liver, and mammary glands from these animals. Lipid-mediated signal transduction is evaluated in primary fibroblast cultures. With respect to the lipid make-up of brain and liver, we report that there is a significant increase (2- to 4-fold) in the neutral lipids present in the livers of vb/vb animals when compared with wild type (+/+) litter mates. No significant changes are observed in the brains of these animals. The mammary glands of vb/vb mice are underdeveloped with respect to ductal and alveolar structures, and the fat pad is composed of predominantly brown adipose tissue rather than the white adipose tissue characteristic of age-matched wild type litter mates. No differences are observed in any aspect of lipid-mediated signal transduction
PMID: 15063778
ISSN: 0006-291x
CID: 44926
Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina
Witkovsky, Paul; Veisenberger, Eleonora; Haycock, John W; Akopian, Abram; Garcia-Espana, Antonio; Meller, Emanuel
We studied in vivo activity-dependent phosphorylation of tyrosine hydroxylase (TH) in dopaminergic (DA) neurons of the rat retina. TH phosphorylation (TH-P) was evaluated by immunocytochemistry, using antibodies specific for each of three regulated phosphorylation sites. TH synthesis rate was measured by dihydroxyphenylalanine (DOPA) accumulation in the presence of NSD-1015, an inhibitor of aromatic amino acid decarboxylase. TH-P was increased markedly by light or after intraocular injection of GABA(A) and glycine inhibitors. All three phosphospecific antibodies responded similarly to test drugs or light. A 30 min exposure to light increased DOPA accumulation by threefold over that seen after 30 min in darkness. Immunostaining to an anti-panNa channel antibody was found in all parts of the DA neuron. TTX blocked TH-P induced by light or GABA/glycine inhibitors but only in varicosities of the DA axon plexus, not in perikarya or dendrites. Veratridine increased TH-P in all parts of the DA neuron. The distribution of the monoamine vesicular transporter 2 was shown by immunocytochemistry to reside in varicosities of the DA plexus but not in dendrites, indicating that the varicosities are sites of dopamine release. Collectively, these data indicate that, in the retina, dopamine synthesis in varicosities is affected by the spiking activity of retinal neurons, possibly including that of the DA neurons themselves
PMID: 15115820
ISSN: 1529-2401
CID: 45999
Rho kinase regulates schwann cell myelination and formation of associated axonal domains
Melendez-Vasquez, Carmen V; Einheber, Steven; Salzer, James L
The myelin sheath forms by the spiral wrapping of a glial membrane around an axon. The mechanisms involved are poorly understood but are likely to involve coordinated changes in the glial cell cytoskeleton. Because of its key role as a regulator of the cytoskeleton, we investigated the role of Rho kinase (ROCK), a major downstream effector of Rho, in Schwann cell morphology, differentiation, and myelination. Pharmacologic inhibition of ROCK activity results in loss of microvilli and stress fibers in Schwann cell cultures and strikingly aberrant myelination in Schwann cell-neuron cocultures; there was no effect on Schwann cell proliferation or differentiation. Treated Schwann cells branch aberrantly and form multiple, small, independent myelin segments along the length of axons, each with associated nodes and paranodes. This organization partially resembles myelin formed by oligodendrocytes rather than the single long myelin sheath characteristic of Schwann cells. ROCK regulates myosin light chain phosphorylation, which is robustly, but transiently, activated at the onset of myelination. These results support a key role of Rho through its effector ROCK in coordinating the movement of the glial membrane around the axon at the onset of myelination via regulation of myosin phosphorylation and actomyosin assembly. They also indicate that the molecular machinery that promotes the wrapping of the glial membrane sheath around the axon is distributed along the entire length of the internode
PMID: 15102911
ISSN: 1529-2401
CID: 42681
ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease
Lustbader, Joyce W; Cirilli, Maurizio; Lin, Chang; Xu, Hong Wei; Takuma, Kazuhiro; Wang, Ning; Caspersen, Casper; Chen, Xi; Pollak, Susan; Chaney, Michael; Trinchese, Fabrizio; Liu, Shumin; Gunn-Moore, Frank; Lue, Lih-Fen; Walker, Douglas G; Kuppusamy, Periannan; Zewier, Zay L; Arancio, Ottavio; Stern, David; Yan, Shirley ShiDu; Wu, Hao
Mitochondrial dysfunction is a hallmark of beta-amyloid (Abeta)-induced neuronal toxicity in Alzheimer's disease (AD). Here, we demonstrate that Abeta-binding alcohol dehydrogenase (ABAD) is a direct molecular link from Abeta to mitochondrial toxicity. Abeta interacts with ABAD in the mitochondria of AD patients and transgenic mice. The crystal structure of Abeta-bound ABAD shows substantial deformation of the active site that prevents nicotinamide adenine dinucleotide (NAD) binding. An ABAD peptide specifically inhibits ABAD-Abeta interaction and suppresses Abeta-induced apoptosis and free-radical generation in neurons. Transgenic mice overexpressing ABAD in an Abeta-rich environment manifest exaggerated neuronal oxidative stress and impaired memory. These data suggest that the ABAD-Abeta interaction may be a therapeutic target in AD
PMID: 15087549
ISSN: 1095-9203
CID: 132229
Thalamocortical dysrhythmia in schizoaffective disorder [Meeting Abstract]
Schulman, JJ; Cancro, R; Llinas, R
ISI:000220755300078
ISSN: 0006-3223
CID: 46646
Cumulative inactivation of N-type CaV2.2 calcium channels modified by alternative splicing
Thaler, Christopher; Gray, Annette C; Lipscombe, Diane
The Ca(V)2 family of voltage-gated calcium channels, present in presynaptic nerve terminals, regulates exocytosis and synaptic transmission. Cumulative inactivation of these channels occurs during trains of action potentials, and this may control short-term dynamics at the synapse. Inactivation during brief, repetitive stimulation is primarily attributed to closed-state inactivation, and several factors modulate the susceptibility of voltage-gated calcium channels to this form of inactivation. We show that alternative splicing of an exon in a cytoplasmic region of the Ca(V)2.2 channel modulates its sensitivity to inactivation during trains of action potential waveforms. The presence of this exon, exon 18a, protects the Ca(V)2.2 channel from entry into closed-state inactivation specifically during short (10 ms to 3 s) and small depolarizations of the membrane potential (-60 mV to -50 mV). The reduced sensitivity to closed-state inactivation within this dynamic range likely underlies the differential responsiveness of Ca(V)2.2 splice isoforms to trains of action potential waveforms. Regulated alternative splicing of Ca(V)2.2 represents a possible mechanism for modulating short-term dynamics of synaptic efficacy in different regions of the nervous system.
PMCID:397472
PMID: 15060274
ISSN: 0027-8424
CID: 2356792
Presynaptic CaMKII is necessary for synaptic plasticity in cultured hippocampal neurons
Ninan, Ipe; Arancio, Ottavio
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional enzyme that is very critical for synaptic plasticity and memory formation. Although significant progress has been made in understanding the role of postsynaptic CaMKII in synaptic plasticity, very little is known about its presynaptic function during plasticity changes. Here we report that KN-93, a membrane-permeable CaMKII inhibitor, blocked glutamate-induced increases in the frequency of miniature excitatory postsynaptic currents (mEPSCs) and the number of presynaptic functional boutons in cultured hippocampal pyramidal neurons. In addition, presynaptic injection of the membrane-impermeable CaMKII inhibitor peptide 281-309 blocked synaptic plasticity induced by tetanus, glutamate, or NO/cGMP pathway activation as expressed by long-lasting increases in EPSC amplitude and functional presynaptic boutons. Presynaptic injection of CaMKII itself coupled with weak tetanus produced an immediate and long-lasting enhancement of EPSC amplitude. Thus, the present results conclusively prove that presynaptic CaMKII is essential for synaptic plasticity in cultured hippocampal neurons
PMID: 15066270
ISSN: 0896-6273
CID: 46204
Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration
Saura, Carlos A; Choi, Se-Young; Beglopoulos, Vassilios; Malkani, Seema; Zhang, Dawei; Shankaranarayana Rao, B S; Chattarji, Sumantra; Kelleher, Raymond J 3rd; Kandel, Eric R; Duff, Karen; Kirkwood, Alfredo; Shen, Jie
Mutations in presenilins are the major cause of familial Alzheimer's disease, but the pathogenic mechanism by which presenilin mutations cause memory loss and neurodegeneration remains unclear. Here we demonstrate that conditional double knockout mice lacking both presenilins in the postnatal forebrain exhibit impairments in hippocampal memory and synaptic plasticity. These deficits are associated with specific reductions in NMDA receptor-mediated responses and synaptic levels of NMDA receptors and alphaCaMKII. Furthermore, loss of presenilins causes reduced expression of CBP and CREB/CBP target genes, such as c-fos and BDNF. With increasing age, mutant mice develop striking neurodegeneration of the cerebral cortex and worsening impairments of memory and synaptic function. Neurodegeneration is accompanied by increased levels of the Cdk5 activator p25 and hyperphosphorylated tau. These results define essential roles and molecular targets of presenilins in synaptic plasticity, learning and memory, and neuronal survival in the adult cerebral cortex
PMID: 15066262
ISSN: 0896-6273
CID: 61236
Molecular determinants of synapsin targeting to presynaptic terminals
Gitler, Daniel; Xu, Yimei; Kao, Hung-Teh; Lin, Dayu; Lim, Sangmi; Feng, Jian; Greengard, Paul; Augustine, George J
Although synapsins are abundant synaptic vesicle proteins that are widely used as markers of presynaptic terminals, the mechanisms that target synapsins to presynaptic terminals have not been elucidated. We have addressed this question by imaging the targeting of green fluorescent protein-tagged synapsins in cultured hippocampal neurons. Whereas all synapsin isoforms targeted robustly to presynaptic terminals in wild-type neurons, synapsin Ib scarcely targeted in neurons in which all synapsins were knocked-out. Coexpression of other synapsin isoforms significantly strengthened the targeting of synapsin Ib in knock-out neurons, indicating that heterodimerization is required for synapsin Ib to target. Truncation mutagenesis revealed that synapsin Ia targets via distributed binding sites that include domains B, C, and E. Although domain A was not necessary for targeting, its presence enhanced targeting. Domain D inhibited targeting, but this inhibition was overcome by domain E. Thus, multiple intermolecular and intramolecular interactions are required for synapsins to target to presynaptic terminals
PMID: 15071120
ISSN: 1529-2401
CID: 60437
Modification of Kv2.1 K+ currents by the silent Kv10 subunits
Vega-Saenz de Miera, Eleazar Carmelo
Human and rat Kv10.1a and b cDNAs encode silent K+ channel pore-forming subunits that modify the electrophysiological properties of Kv2.1. These alternatively spliced variants arise by the usage of an alternative site of splicing in exon 1 producing an 11-amino acid insertion in the linker between the first and second transmembrane domains in Kv10.1b. In human, the Kv10s mRNA were detected by Northern blot in brain kidney lung and pancreas. In brain, they were expressed in cortex, hippocampus, caudate, putamen, amygdala and weakly in substantia nigra. In rat, Kv10.1 products were detected in brain and weakly in testes. In situ hybridization in rat brain shows that Kv10.1 mRNAs are expressed in cortex, olfactory cortical structures, basal ganglia/striatal structures, hippocampus and in many nuclei of the amygdala complex. The CA3 and dentate gyrus of the hippocampus present a gradient that show a progression from high level of expression in the caudo-ventro-medial area to a weak level in the dorso-rostral area. The CA1 and CA2 areas had low levels throughout the hippocampus. Several small nuclei were also labeled in the thalamus, hypothalamus, pons, midbrain, and medulla oblongata. Co-injection of Kv2.1 and Kv10.1a or b mRNAs in Xenopus oocytes produced smaller currents that in the Kv2.1 injected oocytes and a moderate reduction of the inactivation rate without any appreciable change in recovery from inactivation or voltage dependence of activation or inactivation. At higher concentration, Kv10.1a also reduces the activation rate and a more important reduction in the inactivation rate. The gene that encodes for Kv10.1 mRNAs maps to chromosome 2p22.1 in human, 6q12 in rat and 17E4 in mouse, locations consistent with the known systeny for human, rat and mouse chromosomes
PMID: 15046870
ISSN: 0169-328x
CID: 46019