Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14080


Semaphorin-plexin signaling guides patterning of the developing vasculature

Torres-Vazquez J; Gitler AD; Fraser SD; Berk JD; Van N Pham; Fishman MC; Childs S; Epstein JA; Weinstein BM
Major vessels of the vertebrate circulatory system display evolutionarily conserved and reproducible anatomy, but the cues guiding this stereotypic patterning remain obscure. In the nervous system, axonal pathways are shaped by repulsive cues provided by ligands of the semaphorin family that are sensed by migrating neuronal growth cones through plexin receptors. We show that proper blood vessel pathfinding requires the endothelial receptor PlexinD1 and semaphorin signals, and we identify mutations in plexinD1 in the zebrafish vascular patterning mutant out of bounds. These results reveal the fundamental conservation of repulsive patterning mechanisms between axonal migration in the central nervous system and vascular endothelium during angiogenesis
PMID: 15239959
ISSN: 1534-5807
CID: 64500

Calpain mediates calcium-induced activation of the ERK 1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: Relevance to Alzheimer's disease [Meeting Abstract]

Veeranna; Kaji, T; Boland, B; Odrljin, T; Mohan, P; Basavarajappa, BS; Peterhoff, C; Cataldo, AM; Rudnicki, A; Li, BS; Pant, HC; Hungund, BL; Arancio, O; Nixon, RA
ISI:000223058700583
ISSN: 0197-4580
CID: 47723

A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol

Ye, Yihong; Shibata, Yoko; Yun, Chi; Ron, David; Rapoport, Tom A
Elimination of misfolded proteins from the endoplasmic reticulum (ER) by retro-translocation is an important physiological adaptation to ER stress. This process requires recognition of a substrate in the ER lumen and its subsequent movement through the membrane by the cytosolic p97 ATPase. Here we identify a p97-interacting membrane protein complex in the mammalian ER that links these two events. The central component of the complex, Derlin-1, is a homologue of Der1, a yeast protein whose inactivation prevents the elimination of misfolded luminal ER proteins. Derlin-1 associates with different substrates as they move through the membrane, and inactivation of Derlin-1 in C. elegans causes ER stress. Derlin-1 interacts with US11, a virally encoded ER protein that specifically targets MHC class I heavy chains for export from the ER, as well as with VIMP, a novel membrane protein that recruits the p97 ATPase and its cofactor
PMID: 15215856
ISSN: 1476-4687
CID: 43029

Natural killer cell depletion confounds the antitumor mechanism of endogenous IL-12 overexpression

Miller, George; Bleier, Joshua I; Antonescu, Cristina; Pillarisetty, Venu G; Shah, Alaap B; Lahrs, Svenja; DeMatteo, Ronald P
IL-12 gene transfer to hepatocytes using a recombinant adenovirus vector (AdIL-12) has been shown to protect against primary and metastatic liver tumors in mice. However, the mechanism of protection has been elusive and studies using depleting monoclonal antibodies or transgenic mice have purported it to be independent of T and NK cells. We postulated that depletion of NK cells may distort the experimental model and misrepresent the antitumor mechanism by altering the magnitude and duration of transgene expression. We show in mice treated with AdIL-12 that NK depletion increased serum IL-12 levels by more than 250-fold and prolonged transgene expression by nearly 2 weeks compared to nondepleted mice. To determine the contribution of NK cells to tumor protection after AdIL-12 treatment, we analyzed NK cells from treated animals. Isolated NK cells were markedly activated in terms of their lytic activity and IFN-gamma secretion. Adoptive transfer of NK cells from mice that had been treated with AdIL-12 to naive mice was sufficient to confer protection against colorectal hepatic metastases. This protection was mediated in part by NK-cell production of IFN-gamma. Our findings indicate that NK-cell depletion distorts the model of systemic AdIL-12 administration by markedly altering transgene expression, which then may potentiate other antitumor mechanisms, and that endogenous IL-12 overexpression activates NK cells, rendering them sufficient to protect against liver metastases. These data have critical implications for investigating the immunologic mechanisms of experimental models that utilize gene transfer
PMID: 15095305
ISSN: 0020-7136
CID: 74386

A unique pathway for sustained neurotrophin signaling through an ankyrin-rich membrane-spanning protein

Arevalo, Juan Carlos; Yano, Hiroko; Teng, Kenneth K; Chao, Moses V
A major question in cell biology is how molecular specificity is achieved by different growth factor receptors that activate apparently identical signaling events. For the neurotrophin family, a distinguishing feature is the ability to maintain a prolonged duration of signal transduction. However, the mechanisms by which neurotrophin receptors assemble such a sustained signaling complex are not understood. Here we report that an unusual ankyrin-rich transmembrane protein (ARMS+kidins220) is closely associated with Trk receptor tyrosine kinases, and not the EGF receptor. This association requires interactions between transmembrane domains of Trk and ARMS. ARMS is rapidly tyrosine phosphorylated after binding of neurotrophins to Trk receptors and provides a docking site for the CrkL-C3G complex, resulting in Rap1-dependent sustained ERK activation. Accordingly, disruption of Trk-ARMS or the ARMS-CrkL interaction with dominant-negative ARMS mutants, or treatment with small interference RNA against ARMS substantially reduce neurotrophin-elicited signaling to ERK, but without any effect upon Ras or Akt activation. These findings suggest that ARMS acts as a major and neuronal-specific platform for prolonged MAP kinase signaling by neurotrophins
PMCID:423292
PMID: 15167895
ISSN: 0261-4189
CID: 46151

Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications

Agrawal, Rajendra K; Sharma, Manjuli R; Kiel, Michael C; Hirokawa, Go; Booth, Timothy M; Spahn, Christian M T; Grassucci, Robert A; Kaji, Akira; Frank, Joachim
After the termination step of protein synthesis, a deacylated tRNA and mRNA remain associated with the ribosome. The ribosome-recycling factor (RRF), together with elongation factor G (EF-G), disassembles this posttermination complex into mRNA, tRNA, and the ribosome. We have obtained a three-dimensional cryo-electron microscopic map of a complex of the Escherichia coli 70S ribosome and RRF. We find that RRF interacts mainly with the segments of the large ribosomal subunit's (50S) rRNA helices that are involved in the formation of two central intersubunit bridges, B2a and B3. The binding of RRF induces considerable conformational changes in some of the functional domains of the ribosome. As compared to its binding position derived previously by hydroxyl radical probing study, we find that RRF binds further inside the intersubunit space of the ribosome such that the tip of its domain I is shifted (by approximately 13 A) toward protein L5 within the central protuberance of the 50S subunit, and domain II is oriented more toward the small ribosomal subunit (30S). Overlapping binding sites of RRF, EF-G, and the P-site tRNA suggest that the binding of EF-G would trigger the removal of deacylated tRNA from the P site by moving RRF toward the ribosomal E site, and subsequent removal of mRNA may be induced by a shift in the position of 16S rRNA helix 44, which harbors part of the mRNA
PMCID:428444
PMID: 15178758
ISSN: 0027-8424
CID: 66321

Validation of biomarkers in humans exposed to PAHs [Meeting Abstract]

Qu, Q; Hu, Y; Xue, X; Zhou, Z; Li, X; Fu, J; Cohen, B; Tang, E; Roy, N; Melikian, AA; Li, D
ISI:000222348900177
ISSN: 0041-008x
CID: 46527

Structural characterization of fish egg vitelline envelope proteins by mass spectrometry

Darie, Costel C; Biniossek, Martin L; Jovine, Luca; Litscher, Eveline S; Wassarman, Paul M
The extracellular coat, or vitelline envelope (VE), of rainbow trout (Oncorhynchus mykiss) eggs consists of three proteins, called VEalpha (M(r) approximately 52 kDa), VEbeta (M(r) approximately 48 kDa), and VEgamma (M(r) approximately 44 kDa). Each of these proteins is related to mammalian egg zona pellucida (ZP) glycoproteins ZP1-3 and possesses an N-terminal signal sequence, a ZP domain, and a protease cleavage site near the C-terminus. VEalpha and VEbeta also have a trefoil domain. All three proteins possess a relatively large number of cysteine residues (VEalpha, 18; VEbeta, 18; VEgamma, 12), of which 8 are present in the ZP domain and 6 are present in the trefoil domain of VEalpha and VEbeta. Here, several types of mass spectrometry were employed, together with gel electrophoresis of chemical and enzymatic digests, to identify intramolecular disulfide linkages, as well as the N- and C-terminal amino acids of VEalpha, VEbeta, and VEgamma. Additionally, these methods were used to characterize two high molecular weight proteins (HMWPs; M(r) > 110 kDa) of rainbow trout VEs that are heterodimers of individual VE proteins. These analyses have permitted assignment of disulfide linkages and identification of N- and C-terminal amino acids for the VE proteins and determination of the protein composition of two forms of HMWPs. These experiments provide important structural information about fish egg VE proteins and filaments and about structural relationships between extracellular coat proteins of mammalian and nonmammalian eggs.
PMID: 15182189
ISSN: 0006-2960
CID: 1100202

Repression of primordial germ cell differentiation parallels germ line stem cell maintenance

Gilboa, Lilach; Lehmann, Ruth
In Drosophila, primordial germ cells (PGCs) are set aside from somatic cells and subsequently migrate through the embryo and associate with somatic gonadal cells to form the embryonic gonad. During larval stages, PGCs proliferate in the female gonad, and a subset of PGCs are selected at late larval stages to become germ line stem cells (GSCs), the source of continuous egg production throughout adulthood. However, the degree of similarity between PGCs and the self-renewing GSCs is unclear. Here we show that many of the genes that are required for GSC maintenance in adults are also required to prevent precocious differentiation of PGCs within the larval ovary. We show that following overexpression of the GSC-differentiation gene bag of marbles (bam), PGCs differentiate to form cysts without becoming GSCs. Furthermore, PGCs that are mutant for nanos (nos), pumilio (pum) or for signaling components of the decapentaplegic (dpp) pathway also differentiate. The similarity in the genes necessary for GSC maintenance and the repression of PGC differentiation suggest that PGCs and GSCs may be functionally equivalent and that the larval gonad functions as a 'PGC niche'
PMID: 15182671
ISSN: 0960-9822
CID: 44965

Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1

Annes, Justin P; Chen, Yan; Munger, John S; Rifkin, Daniel B
Transforming growth factor-betas (TGF-beta) are secreted as inactive complexes containing the TGF-beta, the TGF-beta propeptide, also called the latency-associated protein (LAP), and the latent TGF-beta binding protein (LTBP). Extracellular activation of this complex is a critical but incompletely understood step in TGF-beta regulation. We have investigated the role of LTBP in modulating TGF-beta generation by the integrin alphaVbeta6. We show that even though alphavbeta6 recognizes an RGD on LAP, LTBP-1 is required for alphaVbeta6-mediated latent TGF-beta activation. The domains of LTBP-1 necessary for activation include the TGF-beta propeptide-binding domain and a basic amino acid sequence (hinge domain) with ECM targeting properties. Our results demonstrate an LTBP-1 isoform-specific function in alphaVbeta6-mediated latent TGF-beta activation; LTBP-3 is unable to substitute for LTBP-1 in this assay. The results reveal a functional role for LTBP-1 in latent TGF-beta activation and suggest that activation of specific latent complexes is regulated by distinct mechanisms that may be determined by the LTBP isoform and its potential interaction with the matrix
PMCID:2172370
PMID: 15184403
ISSN: 0021-9525
CID: 44942