Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14080


Identification of a Ras GTPase-activating protein regulated by receptor-mediated Ca2+ oscillations

Walker, Simon A; Kupzig, Sabine; Bouyoucef, Dalila; Davies, Louise C; Tsuboi, Takashi; Bivona, Trever G; Cozier, Gyles E; Lockyer, Peter J; Buckler, Alan; Rutter, Guy A; Allen, Maxine J; Philips, Mark R; Cullen, Peter J
Receptor-mediated increases in the concentration of intracellular free calcium ([Ca2+]i) are responsible for controlling a plethora of physiological processes including gene expression, secretion, contraction, proliferation, neural signalling, and learning. Increases in [Ca2+]i often occur as repetitive Ca2+ spikes or oscillations. Induced by electrical or receptor stimuli, these repetitive Ca2+ spikes increase their frequency with the amplitude of the receptor stimuli, a phenomenon that appears critical for the induction of selective cellular functions. Here we report the characterisation of RASAL, a Ras GTPase-activating protein that senses the frequency of repetitive Ca2+ spikes by undergoing synchronous oscillatory associations with the plasma membrane. Importantly, we show that only during periods of plasma membrane association does RASAL inactivate Ras signalling. Thus, RASAL senses the frequency of complex Ca2+ signals, decoding them through a regulation of the activation state of Ras. Our data provide a hitherto unrecognised link between complex Ca2+ signals and the regulation of Ras
PMCID:394250
PMID: 15057271
ISSN: 0261-4189
CID: 64124

Rho kinase regulates schwann cell myelination and formation of associated axonal domains

Melendez-Vasquez, Carmen V; Einheber, Steven; Salzer, James L
The myelin sheath forms by the spiral wrapping of a glial membrane around an axon. The mechanisms involved are poorly understood but are likely to involve coordinated changes in the glial cell cytoskeleton. Because of its key role as a regulator of the cytoskeleton, we investigated the role of Rho kinase (ROCK), a major downstream effector of Rho, in Schwann cell morphology, differentiation, and myelination. Pharmacologic inhibition of ROCK activity results in loss of microvilli and stress fibers in Schwann cell cultures and strikingly aberrant myelination in Schwann cell-neuron cocultures; there was no effect on Schwann cell proliferation or differentiation. Treated Schwann cells branch aberrantly and form multiple, small, independent myelin segments along the length of axons, each with associated nodes and paranodes. This organization partially resembles myelin formed by oligodendrocytes rather than the single long myelin sheath characteristic of Schwann cells. ROCK regulates myosin light chain phosphorylation, which is robustly, but transiently, activated at the onset of myelination. These results support a key role of Rho through its effector ROCK in coordinating the movement of the glial membrane around the axon at the onset of myelination via regulation of myosin phosphorylation and actomyosin assembly. They also indicate that the molecular machinery that promotes the wrapping of the glial membrane sheath around the axon is distributed along the entire length of the internode
PMID: 15102911
ISSN: 1529-2401
CID: 42681

Two RNA polymerase complexes from vesicular stomatitis virus-infected cells that carry out transcription and replication of genome RNA

Qanungo, Kaustubha R; Shaji, Daniel; Mathur, Manjula; Banerjee, Amiya K
By immunoaffinity column chromatography, we have purified two RNA polymerase complexes, the transcriptase and replicase, from vesicular stomatitis virus-infected baby hamster kidney cells. The transcriptase is a multiprotein complex, containing the virus-encoded RNA polymerase L and P proteins, and two cellular proteins, translation elongation factor-1alpha and heat-shock protein 60. In addition, the complex contains a submolar amount of cellular mRNA cap guanylyltransferase. The replicase, on the other hand, is a complex containing the viral proteins, L, P, and the nucleocapsid (N), but lacking elongation factor-1alpha, heat-shock protein 60, and guanylyltransferase. The transcriptase complex synthesizes capped mRNAs and initiates transcription at the first gene (N) start site, whereas the replicase complex initiates RNA synthesis at the precise 3' end of the genome RNA and synthesizes encapsidated replication products in the presence of the N-P complex. We propose that two RNA polymerase complexes that differ in their content of virally and host-encoded proteins are separately responsible for transcription and replication of vesicular stomatitis virus genome RNA.
PMCID:395904
PMID: 15069200
ISSN: 0027-8424
CID: 1444482

A duplicated motif controls assembly of zona pellucida domain proteins

Jovine, Luca; Qi, Huayu; Williams, Zev; Litscher, Eveline S; Wassarman, Paul M
Many secreted eukaryotic glycoproteins that play fundamental roles in development, hearing, immunity, and cancer polymerize into filaments and extracellular matrices through zona pellucida (ZP) domains. ZP domain proteins are synthesized as precursors containing C-terminal propeptides that are cleaved at conserved sites. However, the consequences of this processing and the mechanism by which nascent proteins assemble are unclear. By microinjection of mutated DNA constructs into growing oocytes and mammalian cell transfection, we have identified a conserved duplicated motif [EHP (external hydrophobic patch)/IHP (internal hydrophobic patch)] regulating the assembly of mouse ZP proteins. Whereas the transmembrane domain (TMD) of ZP3 can be functionally replaced by an unrelated TMD, mutations in either EHP or IHP do not hinder secretion of full-length ZP3 but completely abolish its assembly. Because mutants truncated before the TMD are not processed, we conclude that the conserved TMD of mammalian ZP proteins does not engage them in specific interactions but is essential for C-terminal processing. Cleavage of ZP precursors results in loss of the EHP, thereby activating secreted polypeptides to assemble by using the IHP within the ZP domain. Taken together, these findings suggest a general mechanism for assembly of ZP domain proteins.
PMCID:395899
PMID: 15079052
ISSN: 0027-8424
CID: 1100212

Brute of Dragon Bone Hill

Boaz, NT; Ciochon, RL
ISI:000220961400051
ISSN: 0262-4079
CID: 742772

Association of the 16-kDa subunit c of vacuolar proton pump with the ileal Na+-dependent bile acid transporter: protein-protein interaction and intracellular trafficking

Sun, An-Qiang; Balasubramaniyan, Natarajan; Liu, Chuan-Ju; Shahid, Mohammad; Suchy, Frederick J
The rat ileal apical sodium-dependent bile acid transporter (Asbt) transports conjugated bile acids in a Na+-dependent fashion and localizes specifically to the apical surface of ileal enterocytes. The mechanisms that target organic anion transporters to different domains of the ileal enterocyte plasma membrane have not been well defined. Previous studies (Sung, A.-Q., Arresa, M. A., Zeng, L., Swaby, I'K., Zhou, M. M., and Suchy, F. J. (2001) J. Biol. Chem. 276, 6825-6833) from our laboratory demonstrated that rat Asbt follows an apical sorting pathway that is brefeldin A-sensitive and insensitive to protein glycosylation, monensin treatment, and low temperature shift. Furthermore, a 14-mer signal sequence that adopts a beta-turn conformation is required for apical localization of rat Asbt. In this study, a vacuolar proton pump subunit (VPP-c, the 16-kDa subunit c of vacuolar H+-ATPase) has been identified as an interacting partner of Asbt by a bacterial two-hybrid screen. A direct protein-protein interaction between Asbt and VPP-c was confirmed in an in vitro pull-down assay and in an in vivo mammalian two-hybrid analysis. Indirect immunofluorescence confocal microscopy demonstrated that the Asbt and VPP-c colocalized in transfected COS-7 and MDCK cells. Moreover, bafilomycin A1 (a specific inhibitor of VPP) interrupted the colocalization of Asbt and VPP-c. A taurocholate influx assay and membrane biotinylation analysis showed that treatment with bafilomycin A1 resulted in a significant decrease in bile acid transport activity and the apical membrane localization of Asbt in transfected cells. Thus, these results suggest that the apical membrane localization of Asbt is mediated in part by the vacuolar proton pump associated apical sorting machinery
PMID: 14752118
ISSN: 0021-9258
CID: 43271

Multi-pathway control of the proliferation versus meiotic development decision in the Caenorhabditis elegans germline

Hansen, Dave; Hubbard, E Jane Albert; Schedl, Tim
An important event in the development of the germline is the initiation of meiotic development. In Caenorhabditis elegans, the conserved GLP-1/Notch signaling pathway regulates the proliferative versus meiotic entry decision, at least in part, by spatially inhibiting genes in the gld-1 and gld-2 parallel pathways, which are proposed to either inhibit proliferation and/or promote meiotic development. Mutations that cause constitutive activation of the GLP-1 pathway, or inactivation of both the gld-1 and gld-2 parallel pathways, result in a tumorous germline in which all cells are thought to be proliferative. Here, to analyze proliferation and meiotic entry in wild-type and mutant tumorous germlines, we use anti-REC-8 and anti-HIM-3 specific antibodies as markers, which under our fixation conditions, stain proliferative and meiotic cells, respectively. Using these makers in wild-type animals, we find that the border of the switch from proliferation to meiotic entry is staggered in late-larval and adult germlines. In wild-type adults, the switch occurs between 19 and 26 cell diameters from the distal end, on average. Our analysis of mutants reveals that tumorous germlines that form when GLP-1 is constitutively active are completely proliferative, while tumors due to inactivation of the gld-1 and gld-2 pathways show evidence of meiotic entry. Genetic and time course studies suggest that a third pathway may exist, parallel to the GLD-1 and GLD-2 pathways, that promotes meiotic development
PMID: 15063172
ISSN: 0012-1606
CID: 72495

Brain-specific deletion of neuropathy target esterase/swisscheese results in neurodegeneration

Akassoglou, Katerina; Malester, Brian; Xu, Jixiang; Tessarollo, Lino; Rosenbluth, Jack; Chao, Moses V
Neuropathy target esterase (NTE) is a neuronal membrane protein originally identified for its property to be modified by organo-phosphates (OPs), which in humans cause neuropathy characterized by axonal degeneration. Drosophila mutants for the homolog gene of NTE, swisscheese (sws), indicated a possible involvement of sws in the regulation of axon-glial cell interaction during glial wrapping. However, the role of NTE/sws in mammalian brain pathophysiology remains unknown. To investigate NTE function in vivo, we used the cre/loxP site-specific recombination strategy to generate mice with a specific deletion of NTE in neuronal tissues. Here we show that loss of NTE leads to prominent neuronal pathology in the hippocampus and thalamus and also defects in the cerebellum. Absence of NTE resulted in disruption of the endoplasmic reticulum, vacuolation of nerve cell bodies, and abnormal reticular aggregates. Thus, these results identify a physiological role for NTE in the nervous system and indicate that a loss-of-function mechanism may contribute to neurodegenerative diseases characterized by vacuolation and neuronal loss
PMCID:387376
PMID: 15051870
ISSN: 0027-8424
CID: 46188

Resolution of sister telomere association is required for progression through mitosis

Dynek, Jasmin N; Smith, Susan
Cohesins keep sister chromatids associated from the time of their replication in S phase until the onset of anaphase. In vertebrate cells, two distinct pathways dissociate cohesins, one acts on chromosome arms and the other on centromeres. Here, we describe a third pathway that acts on telomeres. Knockdown of tankyrase 1, a telomeric poly(ADP-ribose) polymerase caused mitotic arrest. Chromosomes aligned normally on the metaphase plate but were unable to segregate. Sister chromatids separated at centromeres and arms but remained associated at telomeres, apparently through proteinaceous bridges. Thus, telomeres may require a unique tankyrase 1-dependent mechanism for sister chromatid resolution before anaphase
PMID: 15064417
ISSN: 1095-9203
CID: 42576

Mutations in the sonic hedgehog pathway: Enhancement of medulloblastoma induction [Meeting Abstract]

Weiner, HL; Pompeiano, M; Mohan, A; Turnbull, DH; Joyner, AL
ISI:000220440900076
ISSN: 0022-3085
CID: 104594