Searched for: school:SOM
Department/Unit:Cell Biology
Ly6C+myeloid-derived cells suppress antitumor CD8+T cell function [Meeting Abstract]
Frey, AB
ISI:000220470600329
ISSN: 0892-6638
CID: 46594
Obedient and wayward synaptic behavior [Comment]
Colman, David R
Synapse formation is a complex process that culminates in the linking up and locking in of pre- and postsynaptic membranes. Shen at al. (2004 [this issue of Cell]) begin to dissect the molecular instructions that govern target selection of pre- and postsynaptic membrane interactions.
PMID: 15035979
ISSN: 0092-8674
CID: 605892
A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline [Case Report]
Kamiya, Kazusaku; Kaneda, Makoto; Sugawara, Takashi; Mazaki, Emi; Okamura, Nami; Montal, Mauricio; Makita, Naomasa; Tanaka, Masaki; Fukushima, Katsuyuki; Fujiwara, Tateki; Inoue, Yushi; Yamakawa, Kazuhiro
Mutations, exclusively missense, of voltage-gated sodium channel alpha subunit type 1 (SCN1A) and type 2 (SCN2A) genes were reported in patients with idiopathic epilepsy: generalized epilepsy with febrile seizures plus. Nonsense and frameshift mutations of SCN1A, by contrast, were identified in intractable epilepsy: severe myoclonic epilepsy in infancy (SMEI). Here we describe a first nonsense mutation of SCN2A in a patient with intractable epilepsy and severe mental decline. The phenotype is similar to SMEI but distinct because of partial epilepsy, delayed onset (1 year 7 months), and absence of temperature sensitivity. A mutational analysis revealed that the patient had a heterozygous de novo nonsense mutation R102X of SCN2A. Patch-clamp analysis of Na(v)1.2 wild-type channels and the R102X mutant protein coexpressed in human embryonic kidney 293 cells showed that the truncated mutant protein shifted the voltage dependence of inactivation of wild-type channels in the hyperpolarizing direction. Analysis of the subcellular localization of R102X truncated protein suggested that its dominant negative effect could arise from direct or indirect cytoskeletal interactions of the mutant protein. Haploinsufficiency of Na(v)1.2 protein is one plausible explanation for the pathology of this patient; however, our biophysical findings suggest that the R102X truncated protein exerts a dominant negative effect leading to the patient's intractable epilepsy.
PMID: 15028761
ISSN: 0270-6474
CID: 552712
A novel p75 neurotrophin receptor-related protein, NRH2, regulates nerve growth factor binding to the TrkA receptor
Murray, Simon S; Perez, Pilar; Lee, Ramee; Hempstead, Barbara L; Chao, Moses V
Nerve growth factor (NGF) functions as a ligand for two receptors, the TrkA tyrosine kinase receptor and the p75 neurotrophin receptor (p75NTR). The Ig-like domains of Trk receptors and the cysteine-rich repeats of p75NTR are involved in binding to the neurotrophins. Recently, a closely related gene to p75NTR called neurotrophin receptor homolog-2 (NRH2) was identified; however, the function of NRH2 and its relevance to neurotrophin signaling are unclear. NRH2 contains a similar transmembrane and intracellular domain as p75NTR but lacks the characteristic cysteine-rich repeats in the extracellular domain. Here we show that NRH2 is expressed in several neuronal populations that also express p75NTR and Trk receptors. NRH2 does not bind to NGF; however, coimmunoprecipitation experiments demonstrate that NRH2 is capable of interacting with TrkA receptors. Coexpression of NRH2 with TrkA receptors resulted in the formation of high-affinity binding sites for NGF. These results indicate that a transmembrane protein related to p75NTR is capable of modulating Trk receptor binding properties
PMID: 15028767
ISSN: 1529-2401
CID: 46201
Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis
John, Gareth R; Chen, Lanfen; Rivieccio, Mark A; Melendez-Vasquez, Carmen V; Hartley, Adam; Brosnan, Celia F
The cytokine interleukin-1beta (IL-1beta) is critical to the formation of an astrocytic scar after CNS injury, but the mechanisms by which it induces a reactive phenotype remain unresolved. Here, we show that IL-1beta regulates the phenotype of astrocytes via deactivation of the Rho GTPase-Rho kinase (ROCK) pathway, which governs cellular morphology and migration via effects on F-actin and its interactions with focal adhesions, nonmuscle myosin, and microvillar adapter proteins of the ezrin-radixin-moesin (ERM) family. We found that IL-1beta induced cortical reorganization of F-actin and dephosphorylation of focal adhesion kinase, myosin light chain 2, and myosin phosphatase targeting subunit 1 in primary human astrocytes, and that all of these effects were mimicked by Rho-ROCK pathway blockade. We also found that IL-1beta conversely potentiated ERM phosphorylation, and that this effect was mediated via a Rho-ROCK-independent mechanism. Next, we used a rhotekin pulldown assay to confirm directly that IL-1beta deactivates Rho, and further demonstrated that a constitutively active Rho construct rescued astrocytes from developing an IL-1beta-induced reactive phenotype. These data implicate cytokine regulation of the Rho-ROCK pathway in the generation of a reactive astrogliosis, and we suggest that interventions targeted at this level may facilitate manipulation of the glial scar in inflammatory disorders of the human CNS
PMID: 15028778
ISSN: 1529-2401
CID: 71608
Methotrexate and Ras methylation: a new trick for an old drug?
Philips, Mark R
Ras plays a central role in the development and progression of human cancer. Ras function depends on its ability to associate with cellular membranes. Nascent Ras is targeted to membranes by virtue of a series of posttranslational modifications of a C-terminal 'CAAX' motif that include farnesylation, proteolysis, and carboxyl methylation. This pathway is an attractive target for anti-Ras drug development. Farnesyltransferase inhibitors have been developed and are in clinical trials. Their success has prompted interest in developing pharmacologically useful inhibitors of the other two enzymes in the Ras processing pathway. Ironically, it now appears that methotrexate, one of the oldest chemotherapeutic drugs, may work, in part, by inhibiting carboxyl methylation of Ras
PMID: 15039490
ISSN: 1525-8882
CID: 46205
Upregulation of ADAMTS-7B, a newly identified comp-degrading enzyme, by IL-1 beta and BMP-2 [Meeting Abstract]
Liu, C; Fajardo, M; DiCesare, PE
ISI:000225708200235
ISSN: 1063-4584
CID: 50140
Adamts-12 physically associates with and degrades comp [Meeting Abstract]
Liu, C; Kong, W; Fajardo, M; Dicesare, PE
ISI:000225708200237
ISSN: 1063-4584
CID: 50141
The mechanics of calcium transport
Young, H S; Stokes, D L
With the recent atomic models for the sarcoplasmic reticulum Ca(2+)-ATPase in the Ca(2+)-bound state, the Ca(2+)-free, thapsigargin-inhibited state, and the Ca(2+)-free, vanadate-inhibited state, we are that much closer to understanding and animating the Ca(2+)-transport cycle. These "snapshots" of the Ca(2+)-transport cycle reveal an impressive breadth and complexity of conformational change. The cytoplasmic domains undergo rigid-body movements that couple the energy of ATP to the transport of Ca2+ across the membrane. Large-scale rearrangements in the transmembrane domain suggest that the Ca(2+)-binding sites may alternately cease to exist and reform during the transport cycle. Of the three cytoplasmic domains, the actuator (A) domain undergoes the largest movement, namely a 110 degrees rotation normal to the membrane. This domain is linked to transmembrane segments M1-M3, which undergo large rearrangements in the membrane domain. Together, these movements are a main event in Ca2+ transport, yet their significance is poorly understood. Nonetheless, inhibition or modulation of Ca(2+)-ATPase activity appears to target these conformational changes. Thapsigargin is a high-affinity inhibitor that binds to the M3 helix near Phe256, and phospholamban is a modulator of Ca(2+)-ATPase activity that has been cross-linked to M2 and M4. The purpose of this review is to postulate roles for the A domain and M1-M3 in Ca2+ transport and inhibition.
PMID: 15138745
ISSN: 0022-2631
CID: 647892
Fibrillar amyloid protein present in atheroma activates CD36 signal transduction
Medeiros, Lea A; Khan, Tayeba; El Khoury, Joseph B; Pham, Chi L L; Hatters, Danny M; Howlett, Geoffrey J; Lopez, Roland; O'Brien, Kevin D; Moore, Kathryn J
The self-association of proteins to form amyloid fibrils has been implicated in the pathogenesis of a number of diseases including Alzheimer's, Parkinson's, and Creutzfeldt-Jakob diseases. We recently reported that the myeloid scavenger receptor CD36 initiates a signaling cascade upon binding to fibrillar beta-amyloid that stimulates recruitment of microglia in the brain and production of inflammatory mediators. This receptor plays a key role in the pathogenesis of atherosclerosis, prompting us to evaluate whether fibrillar proteins were present in atherosclerotic lesions that could initiate signaling via CD36. We show that apolipoprotein C-II, a component of very low and high density lipoproteins, readily forms amyloid fibrils that initiate macrophage inflammatory responses including reactive oxygen production and tumor necrosis factor alpha expression. Using macrophages derived from wild type and Cd36(-/-) mice to distinguish CD36-specific events, we show that fibrillar apolipoprotein C-II activates a signaling cascade downstream of this receptor that includes Lyn and p44/42 MAPKs. Interruption of this signaling pathway through targeted deletion of Cd36 or blocking of p44/42 MAPK activation inhibits macrophage tumor necrosis factor alpha gene expression. Finally, we demonstrate that apolipoprotein C-II in human atheroma co-localizes to regions positive for markers of amyloid and macrophage accumulation. Together, these data characterize a CD36-dependent signaling cascade initiated by fibrillar amyloid species that may promote atherogenesis
PMID: 14699114
ISSN: 0021-9258
CID: 106638