Searched for: school:SOM
Department/Unit:Neuroscience Institute
High performance of a novel point-of-care blood test for Toxoplasma infection in women from diverse regions of Morocco
Mansouri, Bouchra El; Amarir, Fatima; Peyron, Francois; Adlaoui, El Bachir; Piarroux, Raphael; Lykins, Joseph; Abbassi, Majda El; Nekkal, Nesma; Bouhlal, Nadia; Makkaoui, Kamar; Barkat, Amina; Lyaghfouri, Aziza; Zhou, Ying; Rais, Samira; Oudghiri, Mounia; Elkoraichi, Ismail; Zekri, Mustapha; Belkadi, Nezha; Mellouk, Hajar; Rhajaoui, Mohamed; Boutajangout, Allal; Sadak, Abderrahim; Limonne, Denis; McLeod, Rima; Bissati, Kamal El
Point-of-care (POC) testing for Toxoplasma infection has the potential to revolutionize diagnosis and management of toxoplasmosis, especially in high-risk populations in areas with significant environmental contamination and poor health infrastructure precluding appropriate follow-up and preventing access to medical care. Toxoplasmosis is a significant public health challenge in Morocco, with a relatively heavy burden of infection and, to this point, minimal investment nationally to address this infection. Herein, we analyze the performance of a novel, low-cost rapid test using fingerstick-derived whole blood from 632 women (82 of whom were pregnant) from slums, educational centers, and from nomad groups across different geographical regions (i.e. oceanic, mountainous) of Morocco. The POC test was highly sensitive and specific from all settings. In the first group of 283 women, sera were tested by Platelia ELISA IgG and IgM along with fingerstick whole blood test. Then a matrix study with 349 women was performed in which fingerstick- POC test results and serum obtained by venipuncture contemporaneously were compared. These results show high POC test performance (Sensitivity: 96.4% [IC95 90.6-98.9%]; Specificity: 99.6% [IC95 97.3-99.9%]), and high prevalence of Toxoplasma infection among women living in rural and mountainous areas, and in urban areas with lower educational levels. The high performance of POC test confirms that it can reduce the need for venipuncture and clinical infrastructure in a low resource setting. It can be used to efficiently perform seroprevalence determinations in large group settings across a range of demographics, and potentially expands healthcare access, thereby preventing human suffering.
PMID: 34165384
ISSN: 2222-1751
CID: 4918642
Selective Photoswitchable Allosteric Agonist of a G Protein-Coupled Receptor
Donthamsetti, Prashant; Konrad, David B; Hetzler, Belinda; Fu, Zhu; Trauner, Dirk; Isacoff, Ehud Y
G protein-coupled receptors (GPCRs) are the most common targets of drug discovery. However, the similarity between related GPCRs combined with the complex spatiotemporal dynamics of receptor activation in vivo has hindered drug development. Photopharmacology offers the possibility of using light to control the location and timing of drug action by incorporating a photoisomerizable azobenzene into a GPCR ligand, enabling rapid and reversible switching between an inactive and active configuration. Recent advances in this area include (i) photoagonists and photoantagonists that directly control receptor activity but are nonselective because they bind conserved sites, and (ii) photoallosteric modulators that bind selectively to nonconserved sites but indirectly control receptor activity by modulating the response to endogenous ligand. In this study, we designed a photoswitchable allosteric agonist that targets a nonconserved allosteric site for selectivity and activates the receptor on its own to provide direct control. This work culminated in the development of aBINA, a photoswitchable allosteric agonist that selectively activates the Gi/o-coupled metabotropic glutamate receptor 2 (mGluR2). aBINA is the first example of a new class of precision drugs for GPCRs and other clinically important signaling proteins.
PMCID:8227462
PMID: 34115935
ISSN: 1520-5126
CID: 4950202
Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing
Henin, Simon; Shankar, Anita; Borges, Helen; Flinker, Adeen; Doyle, Werner; Friedman, Daniel; Devinsky, Orrin; Buzsáki, György; Liu, Anli
We describe the spatiotemporal course of cortical high-gamma activity, hippocampal ripple activity and interictal epileptiform discharges during an associative memory task in 15 epilepsy patients undergoing invasive EEG. Successful encoding trials manifested significantly greater high-gamma activity in hippocampus and frontal regions. Successful cued recall trials manifested sustained high-gamma activity in hippocampus compared to failed responses. Hippocampal ripple rates were greater during successful encoding and retrieval trials. Interictal epileptiform discharges during encoding were associated with 15% decreased odds of remembering in hippocampus (95% confidence interval 6-23%). Hippocampal interictal epileptiform discharges during retrieval predicted 25% decreased odds of remembering (15-33%). Odds of remembering were reduced by 25-52% if interictal epileptiform discharges occurred during the 500-2000-ms window of encoding or by 41% during retrieval. During encoding and retrieval, hippocampal interictal epileptiform discharges were followed by a transient decrease in ripple rate. We hypothesize that interictal epileptiform discharges impair associative memory in a regionally and temporally specific manner by decreasing physiological hippocampal ripples necessary for effective encoding and recall. Because dynamic memory impairment arises from pathological interictal epileptiform discharge events competing with physiological ripples, interictal epileptiform discharges represent a promising therapeutic target for memory remediation in patients with epilepsy.
PMID: 33889945
ISSN: 1460-2156
CID: 4847522
Dual Color, Live Imaging of Vesicular Transport in Axons of Cultured Sensory Neurons
Bekku, Yoko; Salzer, James L
The function of neurons in afferent reception, integration, and generation of electrical activity relies on their strikingly polarized organization, characterized by distinct membrane domains. These domains have different compositions resulting from a combination of selective targeting and retention of membrane proteins. In neurons, most proteins are delivered from their site of synthesis in the soma to the axon via anterograde vesicular transport and undergo retrograde transport for redistribution and/or lysosomal degradation. A key question is whether proteins destined for the same domain are transported in separate vesicles for local assembly or whether these proteins are pre-assembled and co-transported in the same vesicles for delivery to their cognate domains. To assess the content of transport vesicles, one strategy relies on staining of sciatic nerves after ligation, which drives the accumulation of anterogradely and retrogradely transported vesicles on the proximal and distal side of the ligature, respectively. This approach may not permit confident assessment of the nature of the intracellular vesicles identified by staining, and analysis is limited to the availability of suitable antibodies. Here, we use dual color live imaging of proteins labeled with different fluorescent tags, visualizing anterograde and retrograde axonal transport of several proteins simultaneously. These proteins were expressed in rat dorsal root ganglion (DRG) neurons cultured alone or with Schwann cells under myelinating conditions to assess whether glial cells modify the patterns of axonal transport. Advantages of this protocol are the dynamic identification of transport vesicles and characterization of their content for various proteins that is not limited by available antibodies.
PMCID:8260256
PMID: 34263008
ISSN: 2331-8325
CID: 4938782
FoxG1 regulates the formation of cortical GABAergic circuit during an early postnatal critical period resulting in autism spectrum disorder-like phenotypes
Miyoshi, Goichi; Ueta, Yoshifumi; Natsubori, Akiyo; Hiraga, Kou; Osaki, Hironobu; Yagasaki, Yuki; Kishi, Yusuke; Yanagawa, Yuchio; Fishell, Gord; Machold, Robert P; Miyata, Mariko
Abnormalities in GABAergic inhibitory circuits have been implicated in the aetiology of autism spectrum disorder (ASD). ASD is caused by genetic and environmental factors. Several genes have been associated with syndromic forms of ASD, including FOXG1. However, when and how dysregulation of FOXG1 can result in defects in inhibitory circuit development and ASD-like social impairments is unclear. Here, we show that increased or decreased FoxG1 expression in both excitatory and inhibitory neurons results in ASD-related circuit and social behavior deficits in our mouse models. We observe that the second postnatal week is the critical period when regulation of FoxG1 expression is required to prevent subsequent ASD-like social impairments. Transplantation of GABAergic precursor cells prior to this critical period and reduction in GABAergic tone via Gad2 mutation ameliorates and exacerbates circuit functionality and social behavioral defects, respectively. Our results provide mechanistic insight into the developmental timing of inhibitory circuit formation underlying ASD-like phenotypes in mouse models.
PMID: 34145239
ISSN: 2041-1723
CID: 4916462
How Photoswitchable Lipids Affect the Order and Dynamics of Lipid Bilayers and Embedded Proteins
Doroudgar, Mahmoudreza; Morstein, Johannes; Becker-Baldus, Johanna; Trauner, Dirk; Glaubitz, Clemens
Altering the properties of phospholipid membranes by light is an attractive option for the noninvasive manipulation of membrane proteins and cellular functions. Lipids with an azobenzene group within their acyl chains such as AzoPC are suitable tools for manipulating lipid order and dynamics through a light-induced trans-to-cis isomerization. However, the action of these photoswitchable lipids at the atomic level is still poorly understood. Here, liposomes containing AzoPC, POPE, and POPG have been characterized by solid-state NMR through chemical shift and dipolar CH order parameter measurements. Upon UV-light illumination, an efficient trans-to-cis conversion can be achieved resulting in a localized reduction of the CH order parameter within the bulk lipid acyl chains. This effect is even more pronounced in liposomes containing the integral membrane protein E. coli diacylglycerol kinase. The protein responds to the light-induced trans-to-cis isomerization by a site-specific increase in the molecular dynamics as observed by altered cross peak intensities in NCA spectra. This study represents a proof-of-concept demonstration for the use of photoswitchable lipids to modulate membrane properties by light for inducing dynamic changes within an embedded membrane protein.
PMID: 34133158
ISSN: 1520-5126
CID: 4950242
Peripheral Nerve Resident Macrophages and Schwann Cells Mediate Cancer-induced Pain
De Logu, Francesco; Marini, Matilde; Landini, Lorenzo; Souza Monteiro de Araujo, Daniel; Bartalucci, Niccolò; Trevisan, Gabriela; Bruno, Gennaro; Marangoni, Martina; Schmidt, Brian Lee; Bunnett, Nigel W; Geppetti, Pierangelo; Nassini, Romina
Although macrophages (MΦ) are known to play a central role in neuropathic pain, their contribution to cancer pain has not been established. Here we report that depletion of sciatic nerve resident MΦs (rMΦ) in mice attenuates mechanical/cold hypersensitivity and spontaneous pain evoked by intraplantar injection of melanoma or lung carcinoma cells. MΦ-colony stimulating factor (M-CSF) was upregulated in the sciatic nerve trunk and mediated cancer-evoked pain via rMΦ expansion, transient receptor potential ankyrin 1 (TRPA1) activation, and oxidative stress. Targeted deletion of Trpa1 revealed a key role for Schwann cell TRPA1 in sciatic nerve rMΦ expansion and pain-like behaviors. Depletion of rMΦs in a medial portion of the sciatic nerve prevented pain-like behaviors. Collectively, we identified a feed-forward pathway involving M-CSF, rMΦ, oxidative stress and Schwann cell TRPA1 that operates throughout the nerve trunk to signal cancer-evoked pain.
PMID: 33771895
ISSN: 1538-7445
CID: 4929522
Perfect and Defective 13C-Furan-Derived Nanothreads from Modest-Pressure Synthesis Analyzed by 13C NMR
Matsuura, Bryan S; Huss, Steven; Zheng, Zhaoxi; Yuan, Shichen; Wang, Tao; Chen, Bo; Badding, John V; Trauner, Dirk; Elacqua, Elizabeth; van Duin, Adri C T; Crespi, Vincent H; Schmidt-Rohr, Klaus
The molecular structure of nanothreads produced by the slow compression of 13C4-furan was studied by advanced solid-state NMR. Spectral editing showed that >95% of carbon atoms were bonded to one hydrogen (C-H) and that there were 2-4% CH2, 0.6% Câ•O, and <0.3% CH3 groups. Alkenes accounted for 18% of the CH moieties, while trapped, unreacted furan made up 7%. Two-dimensional (2D) 13C-13C and 1H-13C NMR identified 12% of all carbon in asymmetric O-CHâ•CH-CH-CH- and 24% in symmetric O-CH-CHâ•CH-CH- rings. While the former represented defects or chain ends, some of the latter appeared to form repeating thread segments. Around 10% of carbon atoms were found in highly ordered, fully saturated nanothread segments. Unusually slow 13C spin-exchange with sites outside the perfect thread segments documented a length of at least 14 bonds; the small width of the perfect-thread signals also implied a fairly long, regular structure. Carbons in the perfect threads underwent relatively slow spin-lattice relaxation, indicating slow spin exchange with other threads and smaller amplitude motions. Through partial inversion recovery, the signals of the perfect threads were observed and analyzed selectively. Previously considered syn-threads with four different C-H bond orientations were ruled out by centerband-only detection of exchange NMR, which was, on the contrary, consistent with anti-threads. The observed 13C chemical shifts were matched well by quantum-chemical calculations for anti-threads but not for more complex structures like syn/anti-threads. These observations represent the first direct determination of the atomic-level structure of fully saturated nanothreads.
PMID: 34130458
ISSN: 1520-5126
CID: 4950232
Enabling a learning healthcare system with automated computer protocols that produce replicable and personalized clinician actions
Morris, Alan H; Stagg, Brian; Lanspa, Michael; Orme, James; Clemmer, Terry P; Weaver, Lindell K; Thomas, Frank; Grissom, Colin K; Hirshberg, Ellie; East, Thomas D; Wallace, Carrie Jane; Young, Michael P; Sittig, Dean F; Pesenti, Antonio; Bombino, Michela; Beck, Eduardo; Sward, Katherine A; Weir, Charlene; Phansalkar, Shobha S; Bernard, Gordon R; Taylor Thompson, B; Brower, Roy; Truwit, Jonathon D; Steingrub, Jay; Duncan Hite, R; Willson, Douglas F; Zimmerman, Jerry J; Nadkarni, Vinay M; Randolph, Adrienne; Curley, Martha A Q; Newth, Christopher J L; Lacroix, Jacques; Agus, Michael S D; Lee, Kang H; deBoisblanc, Bennett P; Scott Evans, R; Sorenson, Dean K; Wong, Anthony; Boland, Michael V; Grainger, David W; Dere, Willard H; Crandall, Alan S; Facelli, Julio C; Huff, Stanley M; Haug, Peter J; Pielmeier, Ulrike; Rees, Stephen E; Karbing, Dan S; Andreassen, Steen; Fan, Eddy; Goldring, Roberta M; Berger, Kenneth I; Oppenheimer, Beno W; Wesley Ely, E; Gajic, Ognjen; Pickering, Brian; Schoenfeld, David A; Tocino, Irena; Gonnering, Russell S; Pronovost, Peter J; Savitz, Lucy A; Dreyfuss, Didier; Slutsky, Arthur S; Crapo, James D; Angus, Derek; Pinsky, Michael R; James, Brent; Berwick, Donald
Clinical decision-making is based on knowledge, expertise, and authority, with clinicians approving almost every intervention-the starting point for delivery of "All the right care, but only the right care," an unachieved healthcare quality improvement goal. Unaided clinicians suffer from human cognitive limitations and biases when decisions are based only on their training, expertise, and experience. Electronic health records (EHRs) could improve healthcare with robust decision-support tools that reduce unwarranted variation of clinician decisions and actions. Current EHRs, focused on results review, documentation, and accounting, are awkward, time-consuming, and contribute to clinician stress and burnout. Decision-support tools could reduce clinician burden and enable replicable clinician decisions and actions that personalize patient care. Most current clinical decision-support tools or aids lack detail and neither reduce burden nor enable replicable actions. Clinicians must provide subjective interpretation and missing logic, thus introducing personal biases and mindless, unwarranted, variation from evidence-based practice. Replicability occurs when different clinicians, with the same patient information and context, come to the same decision and action. We propose a feasible subset of therapeutic decision-support tools based on credible clinical outcome evidence: computer protocols leading to replicable clinician actions (eActions). eActions enable different clinicians to make consistent decisions and actions when faced with the same patient input data. eActions embrace good everyday decision-making informed by evidence, experience, EHR data, and individual patient status. eActions can reduce unwarranted variation, increase quality of clinical care and research, reduce EHR noise, and could enable a learning healthcare system.
PMID: 33594410
ISSN: 1527-974x
CID: 4786872
Broadening the definition of a nervous system to better understand the evolution of plants and animals
Miguel-Tomé, Sergio; Llinás, Rodolfo R
Most textbook definitions recognize only animals as having nervous systems. However, for the past couple decades, botanists have been meticulously studying long-distance signaling systems in plants, and some researchers have stated that plants have a simple nervous system. Thus, an academic conflict has emerged between those who defend and those who deny the existence of a nervous system in plants. This article analyses that debate, and we propose an alternative to answering yes or no: broadening the definition of a nervous system to include plants. We claim that a definition broader than the current one, which is based only on a phylogenetic viewpoint, would be helpful in obtaining a deeper understanding of how evolution has driven the features of signal generation, transmission and processing in multicellular beings. Also, we propose two possible definitions and exemplify how broader a definition allows for new viewpoints on the evolution of plants, animals and the nervous system.
PMID: 34120565
ISSN: 1559-2324
CID: 4916412