Searched for: school:SOM
Department/Unit:Cell Biology
CXCR4/SDF-1 mediates selective endothelial progenitor cell recruitment to ischemic endothelium [Meeting Abstract]
Ceradini, DJ; Tepper, O; Capla, J; Michaels, J; Dobryansky, M; Ashinoff, R; Pelo, C; Galiano, R; Levine, J; Gurtner, G
ISI:000185248100256
ISSN: 1072-7515
CID: 55526
Stimulation of rat liver mitochondrial sn-glycerol-3-phosphate acyltransferase by polymyxin B via enhanced extraction of lysophosphatidic acid
Roy, Arun; Guha, Nilanjan; Veras, Ingrid D; Chakraborty, Sanjoy; Haldar, Dipak
The purpose of this investigation was to determine how polymyxin B stimulates the activity of mitochondrial glycerophosphate acyltransferase. Polymyxin B did not change the integrity of the mitochondrial outer membrane as judged by testing the latency (>80%) of cytochrome oxidase activity. The stimulation totally disappeared when polymyxin B-treated mitochondria were washed. The FA side chain in polymyxin B was unnecessary for stimulation, as the nonapeptide was as effective as the whole antibiotic. The stimulation by polymyxin B or the nonapeptide was observed only in the presence of BSA. Cytochrome c, when added to the incubation medium instead of albumin, did not stimulate the mitochondrial enzyme, but did produce a stimulatory effect of polymyxin B on the mitochondrial acyltransferase. As reported earlier for the bacterial and microsomal acyltransferase, other polycationic compounds such as spermine and spermidine stimulated mitochondrial glycerophosphate acyltransferase. The stimulation of the mitochondrial acyltransferase by spermine and spermidine also occurred only in the presence of BSA. The analysis of the products of esterification demonstrated the presence of more lysophosphatidic acid (LPA) in the polymyxin B- and polyamine-stimulated assays in comparison to their respective control. Furthermore, in comparison to the albumin-treated control, there was 60% more LPA present in the assay supernatant fractions of polymyxin B-treated samples. Our results suggest that polymyxin B stimulates the mitochondrial glycerophosphate acyltransferase activity by enhancing the extraction of more LPA from the mitochondria to the supernatant fraction.
PMID: 14584604
ISSN: 0024-4201
CID: 970442
Control of ascorbic acid efflux in rat luteal cells: role of intracellular calcium and oxygen radicals
Pepperell, John R; Porterfield, D Marshall; Keefe, David L; Behrman, Harold R; Smith, Peter J S
In luteal cells, prostaglandin (PG)F2a mobilizes intracellular calcium concentration ([Ca]i), generates reactive oxygen species (ROS), depletes ascorbic acid (AA) levels, inhibits steroidogenesis, and ultimately induces cell death. We investigated the hypothesis that [Ca]i mobilization stimulates ROS, which results in depletion of cellular AA in rat luteal cells. We used a self-referencing AA-selective electrode that noninvasively measures AA flux at the extended boundary layer of single cells and fluorescence microscopy with fura 2 and dichlorofluorescein diacetate (DCF-DA) to measure [Ca]i and ROS, respectively. Menadione, a generator of intracellular superoxide radical (O2-), PGF2a, and calcium ionophore were shown to increase [Ca]i and stimulate intracellular ROS. With calcium ionophore and PGF2a, but not menadione, the generation of ROS was dependent on extracellular calcium influx. In unstimulated cells there was a net efflux of AA of 121.5 +/- 20.3 fmol x cm-1 x s-1 (mean +/- SE, n = 8), but in the absence of extracellular calcium the efflux was significantly reduced (10.3 +/- 4.9 fmol x cm-1 x s-1; n = 5, P < 0.05). PGF2a and menadione stimulated AA efflux, but calcium ionophore had no significant effect. These data suggest two AA regulatory mechanisms: Under basal conditions, AA efflux is calcium dependent and may represent recycling and maintenance of an antioxidant AA gradient at the plasma membrane. Under luteolytic hormone and/or oxidative stress, AA efflux is stimulated that is independent of extracellular calcium influx or generation of ROS. Although site-specific mobilization of calcium pools and ROS cannot be ruled out, the release of AA by PGF2a-stimulated luteal cells may occur through other signaling pathways
PMID: 12724141
ISSN: 0363-6143
CID: 102008
The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival
Molyneaux, Kathleen A; Zinszner, Helene; Kunwar, Prabhat S; Schaible, Kyle; Stebler, Jurg; Sunshine, Mary Jean; O'Brien, William; Raz, Erez; Littman, Dan; Wylie, Chris; Lehmann, Ruth
In mouse embryos, germ cells arise during gastrulation and migrate to the early gonad. First, they emerge from the primitive streak into the region of the endoderm that forms the hindgut. Later in development, a second phase of migration takes place in which they migrate out of the gut to the genital ridges. There, they co-assemble with somatic cells to form the gonad. In vitro studies in the mouse, and genetic studies in other organisms, suggest that at least part of this process is in response to secreted signals from other tissues. Recent genetic evidence in zebrafish has shown that the interaction between stromal cell-derived factor 1 (SDF1) and its G-protein-coupled receptor CXCR4, already known to control many types of normal and pathological cell migrations, is also required for the normal migration of primordial germ cells. We show that in the mouse, germ cell migration and survival requires the SDF1/CXCR4 interaction. First, migrating germ cells express CXCR4, whilst the body wall mesenchyme and genital ridges express the ligand SDF1. Second, the addition of exogenous SDF1 to living embryo cultures causes aberrant germ cell migration from the gut. Third, germ cells in embryos carrying targeted mutations in CXCR4 do not colonize the gonad normally. However, at earlier stages in the hindgut, germ cells are unaffected in CXCR4(-/-) embryos. Germ cell counts at different stages suggest that SDF1/CXCR4 interaction also mediates germ cell survival. These results show that the SDF1/CXCR4 interaction is specifically required for the colonization of the gonads by primordial germ cells, but not for earlier stages in germ cell migration. This demonstrates a high degree of evolutionary conservation of part of the mechanism, but also an area of evolutionary divergence
PMID: 12900445
ISSN: 0950-1991
CID: 52649
Age-related changes in the biomolecular mechanisms of calvarial osteoblast biology affect fibroblast growth factor-2 signaling and osteogenesis
Cowan, Catherine M; Quarto, Natalina; Warren, Stephen M; Salim, Ali; Longaker, Michael T
The ability of immature animals to orchestrate successful calvarial ossification has been well described. This capacity is markedly attenuated in mature animals and humans greater than 2 years of age. Few studies have investigated biological differences between juvenile and adult osteoblasts that mediate successful osteogenesis. To identify possible mechanisms for this clinical observation, we investigated cellular and molecular differences between primary osteoblasts derived from juvenile (2-day-old) and adult (60-day-old) rat calvaria. Data demonstrated that juvenile osteoblasts contain a subpopulation of less differentiated cells as observed by spindle-like morphology and decreased osteocalcin production. Juvenile, compared with adult, osteoblasts showed increased proliferation and adhesion. Furthermore, following rhFGF-2 stimulation juvenile osteoblasts increased expression of collagen I alpha 1 (5-fold), osteopontin (13-fold), and osteocalcin (16-fold), compared with relatively unchanged adult osteoblasts. Additionally, juvenile osteoblasts organized and produced more matrix proteins and formed 41-fold more bone nodules. Alternatively, adult osteoblasts produced more FGF-2 and preferentially translated the high molecular weight (22 kDa) form. Although adult osteoblasts transcribed more FGF-R1 and juvenile osteoblasts transcribed more FGF-R2 at baseline levels, juvenile osteoblasts translated more FGF-R1 and -R2 and showed increased phosphorylation. Collectively, these findings begin to explain why juvenile, but not adult, osteoblasts successfully heal calvarial defects
PMID: 12788918
ISSN: 0021-9258
CID: 106155
Oxidative stress contributes to arsenic-induced telomere attrition, chromosome instability, and apoptosis
Liu, Lin; Trimarchi, James R; Navarro, Paula; Blasco, Maria A; Keefe, David L
The environmental contaminant arsenic causes cancer, developmental retardation, and other degenerative diseases and, thus, is a serious health concern worldwide. Paradoxically, arsenic also may serve as an anti-tumor therapy, although the mechanisms of its antineoplastic effects remain unclear. Arsenic exerts its toxicity in part by generating reactive oxygen species. We show that arsenic-induced oxidative stress promotes telomere attrition, chromosome end-to-end fusions, and apoptotic cell death. An antioxidant, N-acetylcysteine, effectively prevents arsenic-induced oxidative stress, telomere erosion, chromosome instability, and apoptosis, suggesting that increasing the intracellular antioxidant level may have preventive or therapeutic effects in arsenic-induced chromosome instability and genotoxicity. Embryos with shortened telomeres from late generation telomerase-deficient mice exhibit increased sensitivity to arsenic-induced oxidative damage, suggesting that telomere attrition mediates arsenic-induced apoptosis. Unexpectedly, arsenite did not cause chromosome end-to-end fusions in telomerase RNA knockout mouse embryos despite progressively damaged telomeres and disrupting embryo viability. Together, these findings may explain why arsenic can initiate oxidative stress and telomere erosion, leading to apoptosis and anti-tumor therapy on the one hand and chromosome instability and carcinogenesis on the other
PMID: 12767976
ISSN: 0021-9258
CID: 102007
Intracellular membrane targeting and suppression of Ser880 phosphorylation of glutamate receptor 2 by the linker I-set II domain of AMPA receptor-binding protein
Fu, Jie; deSouza, Sunita; Ziff, Edward B
AMPA receptor-binding protein (ABP) is a multi-postsynaptic density-95/discs large/zona occludens (PDZ) protein that binds to the glutamate receptor 2/3 (GluR2/3) subunits of the AMPA receptor and is implicated in receptor membrane anchorage. A palmitoylated form of ABP localizes to spine heads, whereas a nonpalmitoylated form is found in intracellular clusters. Here, we investigate intracellular cluster formation by ABP and the ability of ABP to associate with GluR2 while in these clusters. We show that ABP interacts with intracellular membranes via the ABP linker I (LI)-set II (SII) subdomain, a region consisting of ABP linker 1 and PDZ4, -5, and -6. This suggests that cluster formation results from LI-SII ABP association with the membrane of a vesicular structure. We present evidence that ABP can self-associate at intracellular membrane surfaces via interactions involving SII. ABP in such membrane clusters can bind and retain GluR2 that has trafficked endocytotically from the plasma membrane. Phosphorylation of GluR2 at serine 880, proximal to the ABP binding site, has been implicated by others in the release of ABP from GluR2 and the mobilization of AMPA receptors for trafficking. We show that binding of GluR2 to ABP blocks phosphorylation of serine 880. This suggests that ABP can stabilize its own association with GluR2. We discuss a model in which ABP can form a protein scaffold at a vesicular membrane that is capable of binding GluR2, leading to formation of an intracellular AMPA receptor pool. Receptors in such a pool may contribute to receptor endocytotic and exocytotic trafficking and recycling
PMID: 12930798
ISSN: 1529-2401
CID: 39103
Shrinkage-based similarity metric for cluster analysis of microarray data
Cherepinsky, Vera; Feng, Jiawu; Rejali, Marc; Mishra, Bud
The current standard correlation coefficient used in the analysis of microarray data was introduced by M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein [(1998) Proc. Natl. Acad. Sci. USA 95, 14863-14868]. Its formulation is rather arbitrary. We give a mathematically rigorous correlation coefficient of two data vectors based on James-Stein shrinkage estimators. We use the assumptions described by Eisen et al., also using the fact that the data can be treated as transformed into normal distributions. While Eisen et al. use zero as an estimator for the expression vector mean mu, we start with the assumption that for each gene, mu is itself a zero-mean normal random variable [with a priori distribution N(0,tau 2)], and use Bayesian analysis to obtain a posteriori distribution of mu in terms of the data. The shrunk estimator for mu differs from the mean of the data vectors and ultimately leads to a statistically robust estimator for correlation coefficients. To evaluate the effectiveness of shrinkage, we conducted in silico experiments and also compared similarity metrics on a biological example by using the data set from Eisen et al. For the latter, we classified genes involved in the regulation of yeast cell-cycle functions by computing clusters based on various definitions of correlation coefficients and contrasting them against clusters based on the activators known in the literature. The estimated false positives and false negatives from this study indicate that using the shrinkage metric improves the accuracy of the analysis
PMCID:187810
PMID: 12902543
ISSN: 0027-8424
CID: 71660
Ankyrin binding mediates L1CAM interactions with static components of the cytoskeleton and inhibits retrograde movement of L1CAM on the cell surface
Gil, Orlando D; Sakurai, Takeshi; Bradley, Ann E; Fink, Marc Y; Cassella, Melanie R; Kuo, James A; Felsenfeld, Dan P
The function of adhesion receptors in both cell adhesion and migration depends critically on interactions with the cytoskeleton. During cell adhesion, cytoskeletal interactions stabilize receptors to strengthen adhesive contacts. In contrast, during cell migration, adhesion proteins are believed to interact with dynamic components of the cytoskeleton, permitting the transmission of traction forces through the receptor to the extracellular environment. The L1 cell adhesion molecule (L1CAM), a member of the Ig superfamily, plays a crucial role in both the migration of neuronal growth cones and the static adhesion between neighboring axons. To understand the basis of L1CAM function in adhesion and migration, we quantified directly the diffusion characteristics of L1CAM on the upper surface of ND-7 neuroblastoma hybrid cells as an indication of receptor-cytoskeleton interactions. We find that cell surface L1CAM engages in diffusion, retrograde movement, and stationary behavior, consistent with interactions between L1CAM and two populations of cytoskeleton proteins. We provide evidence that the cytoskeletal adaptor protein ankyrin mediates stationary behavior while inhibiting the actin-dependent retrograde movement of L1CAM. Moreover, inhibitors of L1CAM-ankyrin interactions promote L1CAM-mediated axon growth. Together, these results suggest that ankyrin binding plays a crucial role in the anti-coordinate regulation of L1CAM-mediated adhesion and migration.
PMCID:2173803
PMID: 12925712
ISSN: 0021-9525
CID: 2518562
Molecular basis for atovaquone binding to the cytochrome bc1 complex
Kessl, Jacques J; Lange, Benjamin B; Merbitz-Zahradnik, Torsten; Zwicker, Klaus; Hill, Philip; Meunier, Brigitte; Palsdottir, Hildur; Hunte, Carola; Meshnick, Steve; Trumpower, Bernard L
Atovaquone is a substituted 2-hydroxynaphthoquinone that is used therapeutically to treat Plasmodium falciparum malaria, Pneumocystis carinii pneumonia, and Toxoplasma gondii toxoplasmosis. It is thought to act on these organisms by inhibiting the cytochrome bc1 complex. We have examined the interaction of atovaquone with the bc1 complex isolated from Saccharomyces cerevisiae, a surrogate, nonpathogenic fungus. Atovaquone inhibits the bc1 complex competitively with apparent Ki = 9 nm, raises the midpoint potential of the Rieske iron-sulfur protein from 285 to 385 mV, and shifts the g values in the EPR spectrum of the Rieske center. These results indicate that atovaquone binds to the ubiquinol oxidation pocket of the bc1 complex, where it interacts with the Rieske iron-sulfur protein. A computed energy-minimized structure for atovaquone liganded to the yeast bc1 complex suggests that a phenylalanine at position 275 of cytochrome b in the bovine bc1 complex, as opposed to leucine at the equivalent position in the yeast enzyme, is responsible for the decreased sensitivity of the bovine bc1 complex (Ki = 80 nm) to atovaquone. When a L275F mutation was introduced into the yeast cytochrome b, the sensitivity of the yeast enzyme to atovaquone decreased (Ki = 100 nm) with no loss in activity, confirming that the L275F exchange contributes to the differential sensitivity of these two species to atovaquone. These results provide the first molecular description of how atovaquone binds to the bc1 complex and explain the differential inhibition of the fungal versus mammalian enzymes.
PMID: 12791689
ISSN: 0021-9258
CID: 160524