Searched for: school:SOM
Department/Unit:Cell Biology
Shrinkage-based similarity metric for cluster analysis of microarray data
Cherepinsky, Vera; Feng, Jiawu; Rejali, Marc; Mishra, Bud
The current standard correlation coefficient used in the analysis of microarray data was introduced by M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein [(1998) Proc. Natl. Acad. Sci. USA 95, 14863-14868]. Its formulation is rather arbitrary. We give a mathematically rigorous correlation coefficient of two data vectors based on James-Stein shrinkage estimators. We use the assumptions described by Eisen et al., also using the fact that the data can be treated as transformed into normal distributions. While Eisen et al. use zero as an estimator for the expression vector mean mu, we start with the assumption that for each gene, mu is itself a zero-mean normal random variable [with a priori distribution N(0,tau 2)], and use Bayesian analysis to obtain a posteriori distribution of mu in terms of the data. The shrunk estimator for mu differs from the mean of the data vectors and ultimately leads to a statistically robust estimator for correlation coefficients. To evaluate the effectiveness of shrinkage, we conducted in silico experiments and also compared similarity metrics on a biological example by using the data set from Eisen et al. For the latter, we classified genes involved in the regulation of yeast cell-cycle functions by computing clusters based on various definitions of correlation coefficients and contrasting them against clusters based on the activators known in the literature. The estimated false positives and false negatives from this study indicate that using the shrinkage metric improves the accuracy of the analysis
PMCID:187810
PMID: 12902543
ISSN: 0027-8424
CID: 71660
Ankyrin binding mediates L1CAM interactions with static components of the cytoskeleton and inhibits retrograde movement of L1CAM on the cell surface
Gil, Orlando D; Sakurai, Takeshi; Bradley, Ann E; Fink, Marc Y; Cassella, Melanie R; Kuo, James A; Felsenfeld, Dan P
The function of adhesion receptors in both cell adhesion and migration depends critically on interactions with the cytoskeleton. During cell adhesion, cytoskeletal interactions stabilize receptors to strengthen adhesive contacts. In contrast, during cell migration, adhesion proteins are believed to interact with dynamic components of the cytoskeleton, permitting the transmission of traction forces through the receptor to the extracellular environment. The L1 cell adhesion molecule (L1CAM), a member of the Ig superfamily, plays a crucial role in both the migration of neuronal growth cones and the static adhesion between neighboring axons. To understand the basis of L1CAM function in adhesion and migration, we quantified directly the diffusion characteristics of L1CAM on the upper surface of ND-7 neuroblastoma hybrid cells as an indication of receptor-cytoskeleton interactions. We find that cell surface L1CAM engages in diffusion, retrograde movement, and stationary behavior, consistent with interactions between L1CAM and two populations of cytoskeleton proteins. We provide evidence that the cytoskeletal adaptor protein ankyrin mediates stationary behavior while inhibiting the actin-dependent retrograde movement of L1CAM. Moreover, inhibitors of L1CAM-ankyrin interactions promote L1CAM-mediated axon growth. Together, these results suggest that ankyrin binding plays a crucial role in the anti-coordinate regulation of L1CAM-mediated adhesion and migration.
PMCID:2173803
PMID: 12925712
ISSN: 0021-9525
CID: 2518562
Rab5-stimulated up-regulation of the endocytic pathway increases intracellular beta-cleaved amyloid precursor protein carboxyl-terminal fragment levels and Abeta production
Grbovic, Olivera M; Mathews, Paul M; Jiang, Ying; Schmidt, Stephen D; Dinakar, Ravi; Summers-Terio, Nicole B; Ceresa, Brian P; Nixon, Ralph A; Cataldo, Anne M
We previously identified abnormalities of the endocytic pathway in neurons as the earliest known pathology in sporadic Alzheimer's disease (AD) and Down's syndrome brain. In this study, we modeled aspects of these AD-related endocytic changes in murine L cells by overexpressing Rab5, a positive regulator of endocytosis. Rab5-transfected cells exhibited abnormally large endosomes immunoreactive for Rab5 and early endosomal antigen 1, resembling the endosome morphology seen in affected neurons from AD brain. The levels of both Abeta40 and Abeta42 in conditioned medium were increased more than 2.5-fold following Rab5 overexpression. In Rab5 overexpressing cells, the levels of beta-cleaved amyloid precursor protein (APP) carboxyl-terminal fragments (betaCTF), the rate-limiting proteolytic intermediate in Abeta generation, were increased up to 2-fold relative to APP holoprotein levels. An increase in beta-cleaved soluble APP relative to alpha-cleaved soluble APP was also observed following Rab5 overexpression. BetaCTFs were co-localized by immunolabeling to vesicular compartments, including the early endosome and the trans-Golgi network. These results demonstrate a relationship between endosomal pathway activity, betaCTF generation, and Abeta production. Our findings in this model system suggest that the endosomal pathology seen at the earliest stage of sporadic AD may contribute to APP proteolysis along a beta-amyloidogenic pathway
PMID: 12761223
ISSN: 0021-9258
CID: 48176
Structure of the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site inhibitor bound
Palsdottir, Hildur; Lojero, Carlos G; Trumpower, Bernard L; Hunte, Carola
Bifurcated electron transfer during ubiquinol oxidation is the key reaction of cytochrome bc1 complex catalysis. Binding of the competitive inhibitor 5-n-heptyl-6-hydroxy-4,7-dioxobenzothiazole to the Qo site of the cytochrome bc1 complex from Saccharomyces cerevisiae was analyzed by x-ray crystallography. This alkylhydroxydioxobenzothiazole is bound in its ionized form as evident from the crystal structure and confirmed by spectroscopic analysis, consistent with a measured pKa = 6.1 of the hydroxy group in detergent micelles. Stabilizing forces for the hydroxyquinone anion inhibitor include a polarized hydrogen bond to the iron-sulfur cluster ligand His181 and on-edge interactions via weak hydrogen bonds with cytochrome b residue Tyr279. The hydroxy group of the latter contributes to stabilization of the Rieske protein in the b-position by donating a hydrogen bond. The reported pH dependence of inhibition with lower efficacy at alkaline pH is attributed to the protonation state of His181 with a pKa of 7.5. Glu272, a proposed primary ligand and proton acceptor of ubiquinol, is not bound to the carbonyl group of the hydroxydioxobenzothiazole ring but is rotated out of the binding pocket toward the heme bL propionate A, to which it is hydrogen-bonded via a single water molecule. The observed hydrogen bonding pattern provides experimental evidence for the previously proposed proton exit pathway involving the heme propionate and a chain of water molecules. Binding of the alkyl-6-hydroxy-4,7-dioxobenzothiazole is discussed as resembling an intermediate step of ubiquinol oxidation, supporting a single occupancy model at the Qo site.
PMID: 12782631
ISSN: 0021-9258
CID: 160525
Molecular basis for atovaquone binding to the cytochrome bc1 complex
Kessl, Jacques J; Lange, Benjamin B; Merbitz-Zahradnik, Torsten; Zwicker, Klaus; Hill, Philip; Meunier, Brigitte; Palsdottir, Hildur; Hunte, Carola; Meshnick, Steve; Trumpower, Bernard L
Atovaquone is a substituted 2-hydroxynaphthoquinone that is used therapeutically to treat Plasmodium falciparum malaria, Pneumocystis carinii pneumonia, and Toxoplasma gondii toxoplasmosis. It is thought to act on these organisms by inhibiting the cytochrome bc1 complex. We have examined the interaction of atovaquone with the bc1 complex isolated from Saccharomyces cerevisiae, a surrogate, nonpathogenic fungus. Atovaquone inhibits the bc1 complex competitively with apparent Ki = 9 nm, raises the midpoint potential of the Rieske iron-sulfur protein from 285 to 385 mV, and shifts the g values in the EPR spectrum of the Rieske center. These results indicate that atovaquone binds to the ubiquinol oxidation pocket of the bc1 complex, where it interacts with the Rieske iron-sulfur protein. A computed energy-minimized structure for atovaquone liganded to the yeast bc1 complex suggests that a phenylalanine at position 275 of cytochrome b in the bovine bc1 complex, as opposed to leucine at the equivalent position in the yeast enzyme, is responsible for the decreased sensitivity of the bovine bc1 complex (Ki = 80 nm) to atovaquone. When a L275F mutation was introduced into the yeast cytochrome b, the sensitivity of the yeast enzyme to atovaquone decreased (Ki = 100 nm) with no loss in activity, confirming that the L275F exchange contributes to the differential sensitivity of these two species to atovaquone. These results provide the first molecular description of how atovaquone binds to the bc1 complex and explain the differential inhibition of the fungal versus mammalian enzymes.
PMID: 12791689
ISSN: 0021-9258
CID: 160524
Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase
Opalka, Natacha; Chlenov, Mark; Chacon, Pablo; Rice, William J; Wriggers, Willy; Darst, Seth A
Bacterial GreA and GreB promote transcription elongation by stimulating an endogenous, endonucleolytic transcript cleavage activity of the RNA polymerase. The structure of Escherichia coli core RNA polymerase bound to GreB was determined by cryo-electron microscopy and image processing of helical crystals to a nominal resolution of 15 A, allowing fitting of high-resolution RNA polymerase and GreB structures. In the resulting model, the GreB N-terminal coiled-coil domain extends 45 A through a channel directly to the RNA polymerase active site. The model leads to detailed insights into the mechanism of Gre factor activity that explains a wide range of experimental observations and points to a key role for conserved acidic residues at the tip of the Gre factor coiled coil in modifying the RNA polymerase active site to catalyze the cleavage reaction. Mutational studies confirm that these positions are critical for Gre factor function.
PMID: 12914698
ISSN: 0092-8674
CID: 3799962
JNK-interacting protein 1 promotes Akt1 activation
Kim, Albert H; Sasaki, Takehiko; Chao, Moses V
Members of the JNK pathway are organized together by virtue of interactions with JNK interacting protein 1 (JIP1), a scaffold protein. Here we have investigated the possibility that JIP1 may also affect the catalytic activity of Akt1, a serine/threonine kinase that has been implicated in multiple cellular processes, including survival and proliferation. JIP1 expression enhanced Akt1 kinase activity in a dose-dependent manner following serum starvation in 293 cells. Cellular activation of Akt1 following stimulation with low concentrations of insulin-like growth factor (IGF-1) was elevated in the presence of JIP1. JIP1 expression also prolonged Akt1 stimulation after a short IGF-1 pulse. The mechanism of JIP1-mediated Akt1 activation involved JIP1 protein binding to the Akt1 pleckstrin homology domain, which in turn promoted the phosphorylation of the activation T-loop of Akt1 by phosphoinositide-dependent kinase-1. These results suggest that, in certain cellular contexts, JIP1 may act as an Akt1 scaffold, which regulates the enzymatic activity of Akt1. This study also indicates that JIP1 expression can exert signaling effects independent of JNK activity
PMID: 12783873
ISSN: 0021-9258
CID: 38382
Development. Longing for ligand: hedgehog, patched, and cell death [Comment]
Guerrero, Isabel; Ruiz i Altaba, Ariel
PMID: 12907783
ISSN: 1095-9203
CID: 44964
High incidence of cardiac malformations in connexin40-deficient mice
Gu, Hong; Smith, Frank C; Taffet, Steven M; Delmar, Mario
Gap junctions are intercellular channels formed by oligomerization of a protein called connexin (Cx). The heart expresses at least three connexin isotypes: Cx40, Cx43, and Cx45. A possible role for Cx40 in cardiac morphogenesis remains to be determined. We have characterized the anatomy and histology of fetal and newborn hearts obtained from crossing Cx40-deficient mice of mixed genetic background (C57BL/6x129Sv). Hearts were serial-sectioned (5 microm) along the coronal plane, stained with hematoxylin-eosin, and visualized by conventional light microscopy. Cardiac malformations in mice lacking Cx40 in one allele (Cx40+/-) included bifid atrial appendage, ventricular septal defect, tetralogy of Fallot (TOF), and an aortic arch abnormality. In Cx40-/- mice resulting from crossing of Cx40+/- mice, the most common cardiac malformations were double-outlet right ventricle (DORV), TOF, and endocardial cushion defects. Overall incidence of cardiac malformations was 6/33 (18%) in Cx40+/- mice and 4/12 (33%) in Cx40-/- mice. No cardiac malformations were observed in 15 wild-type mice studied. In addition, we examined 39 hearts from offspring of Cx40-/- matings. Frequency of cardiac malformations was even higher in this group (44%). Over one third of the hearts (14 of 39) showed conotruncal malformations corresponding to either DORV or TOF. Endocardial cushion defects were found in 3 out of 39 hearts. Our results suggest that Cx40 participates in cardiac morphogenesis, likely in association with other (unknown) products whose expression may vary with the genetic background of the mice
PMID: 12842919
ISSN: 1524-4571
CID: 113868
Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1
Bivona, Trever G; Perez De Castro, Ignacio; Ahearn, Ian M; Grana, Theresa M; Chiu, Vi K; Lockyer, Peter J; Cullen, Peter J; Pellicer, Angel; Cox, Adrienne D; Philips, Mark R
Ras proteins regulate cellular growth and differentiation, and are mutated in 30% of cancers. We have shown recently that Ras is activated on and transmits signals from the Golgi apparatus as well as the plasma membrane but the mechanism of compartmentalized signalling was not determined. Here we show that, in response to Src-dependent activation of phospholipase Cgamma1, the Ras guanine nucleotide exchange factor RasGRP1 translocated to the Golgi where it activated Ras. Whereas Ca(2+) positively regulated Ras on the Golgi apparatus through RasGRP1, the same second messenger negatively regulated Ras on the plasma membrane by means of the Ras GTPase-activating protein CAPRI. Ras activation after T-cell receptor stimulation in Jurkat cells, rich in RasGRP1, was limited to the Golgi apparatus through the action of CAPRI, demonstrating unambiguously a physiological role for Ras on Golgi. Activation of Ras on Golgi also induced differentiation of PC12 cells, transformed fibroblasts and mediated radioresistance. Thus, activation of Ras on Golgi has important biological consequences and proceeds through a pathway distinct from the one that activates Ras on the plasma membrane
PMID: 12845332
ISSN: 1476-4687
CID: 39161