Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14080


Behavioral and metabolic abnormalities in APP/PSI transgenic mice [Meeting Abstract]

Sadowski, M; Pankiewicz, J; Scholtzova, H; Quartermain, D; Jensen, C; Gruen, RJ; Duff, K; Nixon, RA; Wisnicwski, T
ISI:000182959100056
ISSN: 0022-3069
CID: 38569

Rho-GTPases regulate Schwann cell morphology and myelination [Meeting Abstract]

Melendez-Vasquez, CV; Einheber, S; Salzer, JL
ISI:000182828800108
ISSN: 0022-3042
CID: 38571

Interactions of trimeric purine nucleoside phosphorylases with ground state analogues--calorimetric and fluorimetric studies

Wielgus-Kutrowska, Beata; Frank, Joachim; Holy, Antonin; Koellner, Gertraud; Bzowska, Agnieszka
Binding enthalpies, dissociation constants and stoichiometry of binding for interaction of trimeric calf spleen and Cellulomonas sp. purine nucleoside phosphorylases with their ground state analogues (substrates and inhibitors) were studied by calorimetric and spectrofluorimetric methods. Data for all ligands, with possible exception of hypoxanthine, are consistent with three identical non-interacting binding sites
PMID: 14565498
ISSN: 1525-7770
CID: 66328

An approach to examining model dependence in EM reconstructions using cross-validation

Shaikh, Tanvir R; Hegerl, Reiner; Frank, Joachim
Reference bias refers to a common problem in fitting experimental data to an initial model. Given enough free parameters, a good fit of any experimental data to the model can be obtained, even if the experimental data contain only noise. Reference-based alignment methods used in electron microscopy (EM) are subject to this type of bias, in that images containing pure noise can regenerate the reference. Cross-validation is based on the idea that the experimental data used to assess the validity of the fitting should not be the same data as were used to do the fitting. Here we present the application of cross-validation to one form of reference-based alignment: 3D-projection matching in single-particle reconstructions. Our results show that reference bias is indeed present in reconstructions, but that the effect is small for real data compared to that for random noise, and that this difference in behavior is magnified, rather than diminished, during iterative refinement
PMID: 12713958
ISSN: 1047-8477
CID: 66333

Nav1.1 channels with mutations of severe myoclonic epilepsy in infancy display attenuated currents

Sugawara, Takashi; Tsurubuchi, Yuji; Fujiwara, Tateki; Mazaki-Miyazaki, Emi; Nagata, Keiichi; Montal, Mauricio; Inoue, Yushi; Yamakawa, Kazuhiro
Severe myoclonic epilepsy in infancy (SMEI) is characterized by intractable febrile and afebrile seizures, severe mental decline, and onset during the first year of life. Nonsense, frameshift, and missense mutations of SCN1A gene encoding the voltage-gated Na(+) channel alpha-subunit type I (Na(v)1.1) have been identified in patients with SMEI. Here, we performed whole-cell patch-clamp analyses on HEK293 cells expressing human Na(v)1.1 channels bearing SMEI nonsense and missense mutations. The mutant channels showed remarkably attenuated or barely detectable inward sodium currents. Our findings indicate that SMEI mutations lead to loss-of-function and may contribute to the development of SMEI phenotypes.
PMID: 12837571
ISSN: 0920-1211
CID: 552762

Nitric oxide synthase production and nitric oxide regulation of preimplantation embryo development

Tranguch, Susanne; Steuerwald, Nury; Huet-Hudson, Yvette M
Nitric oxide (NO) production plays an important role in regulating preimplantation embryo development. NO is produced from l-arginine by the enzyme nitric oxide synthase (NOS), which has three isoforms: endothelial (eNOS), neuronal (nNOS), and inducible (iNOS). It has been previously shown that inhibition of NO production by NG-nitro-l-arginine (l-NA) inhibits the development of two-cell embryos to the four-cell stage. However, excess NO also halts embryo development, possibly through the production of free radicals. We hypothesize that multiple NOS isoforms are expressed in order to ensure normal preimplantation embryo development and that, in this process, NO acts through the cGMP pathway. Using reverse transcription-polymerase chain reaction, mRNA for all three NOS isoforms was amplified from two-cell, four-cell, morula, and blastocyst embryos. However, blastocyst-stage embryos isolated midmorning on Day 4 of pregnancy expressed only nNOS and eNOS, whereas those isolated midafternoon again expressed all three NOS isoforms. Culture of one-cell embryos in various concentrations of Whitten (positive control), S-nitroso-N-acetylpenicillamine (SNP, a NO donor), l-NA, and/or 8-Br-cGMP demonstrated that NO is acting, at least in part, through cGMP in preimplantation embryo development. In addition, we determined that a critical concentration of NO and cGMP is required for normal embryo development and deviations from this concentration lead to developmental arrest and/or apoptosis of the embryo. This data provides support for a requirement of NO in preimplantation embryo development and one mechanism through which it regulates mitotic division in these embryos.
PMID: 12606428
ISSN: 0006-3363
CID: 2157472

The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm

Dougan, Scott T; Warga, Rachel M; Kane, Donald A; Schier, Alexander F; Talbot, William S
Nodal signals, a subclass of the TGFbeta superfamily of secreted factors, induce formation of mesoderm and endoderm in vertebrate embryos. We have examined the possible dorsoventral and animal-vegetal patterning roles for Nodal signals by using mutations in two zebrafish nodal-related genes, squint and cyclops, to manipulate genetically the levels and timing of Nodal activity. squint mutants lack dorsal mesendodermal gene expression at the late blastula stage, and fate mapping and gene expression studies in sqt(-/-); cyc(+/+) and sqt(-/-); cyc(+/-) mutants show that some dorsal marginal cells inappropriately form hindbrain and spinal cord instead of dorsal mesendodermal derivatives. The effects on ventrolateral mesendoderm are less severe, although the endoderm is reduced and muscle precursors are located nearer to the margin than in wild type. Our results support a role for Nodal signals in patterning the mesendoderm along the animal-vegetal axis and indicate that dorsal and ventrolateral mesoderm require different levels of squint and cyclops function. Dorsal marginal cells were not transformed toward more lateral fates in either sqt(-/-); cyc(+/-) or sqt(-/-); cyc(+/+) embryos, arguing against a role for the graded action of Nodal signals in dorsoventral patterning of the mesendoderm. Differential regulation of the cyclops gene in these cells contributes to the different requirements for nodal-related gene function in these cells. Dorsal expression of cyclops requires Nodal-dependent autoregulation, whereas other factors induce cyclops expression in ventrolateral cells. In addition, the differential timing of dorsal mesendoderm induction in squint and cyclops mutants suggests that dorsal marginal cells can respond to Nodal signals at stages ranging from the mid-blastula through the mid-gastrula.
PMID: 12642489
ISSN: 0950-1991
CID: 650132

Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole

Nascimento, Adriana M; Goldman, Gustavo H; Park, Steven; Marras, Salvatore A E; Delmas, Guillaume; Oza, Uma; Lolans, Karen; Dudley, Michael N; Mann, Paul A; Perlin, David S
A collection of Aspergillus fumigatus mutants highly resistant to itraconazole (RIT) at 100 micro g ml(-1) were selected in vitro (following UV irradiation as a preliminary step) to investigate mechanisms of drug resistance in this clinically important pathogen. Eight of the RIT mutants were found to have a mutation at Gly54 (G54E, -K, or -R) in the azole target gene CYP51A. Primers designed for highly conserved regions of multidrug resistance (MDR) pumps were used in reverse transcriptase PCR amplification reactions to identify novel genes encoding potential MDR efflux pumps in A. fumigatus. Two genes, AfuMDR3 and AfuMDR4, showed prominent changes in expression levels in many RIT mutants and were characterized in more detail. Analysis of the deduced amino acid sequence encoded by AfuMDR3 revealed high similarity to major facilitator superfamily transporters, while AfuMDR4 was a typical member of the ATP-binding cassette superfamily. Real-time quantitative PCR with molecular beacon probes was used to assess expression levels of AfuMDR3 and AfuMDR4. Most RIT mutants showed either constitutive high-level expression of both genes or induction of expression upon exposure to itraconazole. Our results suggest that overexpression of one or both of these newly identified drug efflux pump genes of A. fumigatus and/or selection of drug target site mutations are linked to high-level itraconazole resistance and are mechanistic considerations for the emergence of clinical resistance to itraconazole.
PMCID:153329
PMID: 12709346
ISSN: 0066-4804
CID: 310402

Regulation of copper absorption by copper availability in the Caco-2 cell intestinal model

Zerounian, Nora R; Redekosky, Carmen; Malpe, Rashmi; Linder, Maria C
Relatively little is known about the individual steps in intestinal copper absorption and whether or how they may be regulated. Polarized Caco-2 cell monolayers with tight junctions offer an already tested model in which to study intestinal metal transport. This model was used to examine potential effects of cellular copper availability on copper absorption. Uptake and transport were determined on application of (64)Cu(II) to the brush border. In the range of 0.2-2 micro M, uptake was dose dependent and was approximately 20% of dose/90 min. Overall transport of (64)Cu across the basolateral surface was approximately 0.3%. When cellular copper levels were depleted 40% by 18-h pretreatment with the specific copper chelator triethylenetetraamine, uptake and overall transport were markedly increased, going to 80 and 65% of dose, respectively. Cellular retention of (64)Cu fell fourfold, from 6 to 1.5%. Depletion of copper with the chelator was rapid and preceded initial changes in uptake and overall transport by 4 h. A lesser depletion of cellular copper (13%) failed to enhance copper uptake but doubled the rate of overall transport, as measured with (64)Cu and by atomic absorption. As previously reported, preexposure of the cells to excess copper (10 micro M, 18 h) also enhanced copper uptake ( approximately 3-fold). In contrast, ascorbate (10-1,000 micro M) failed to significantly alter uptake and transport of 1 micro M (64)Cu. Our findings are consistent with the concepts that, in the low physiological range, copper availability alters the absorption capacity of the intestine to support whole body homeostasis and that basolateral transport is more sensitively regulated than uptake.
PMID: 12540371
ISSN: 0193-1857
CID: 281272

Targeted disruption of the ATP2A1 gene encoding the sarco(endo)plasmic reticulum Ca2+ ATPase isoform 1 (SERCA1) impairs diaphragm function and is lethal in neonatal mice

Pan, Yan; Zvaritch, Elena; Tupling, A Russ; Rice, William J; de Leon, Stella; Rudnicki, Michael; McKerlie, Colin; Banwell, Brenda L; MacLennan, David H
Mutations in the ATP2A1 gene, encoding isoform 1 of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1), are one cause of Brody disease, characterized in humans by exercise-induced contraction of fast twitch (type II) skeletal muscle fibers. In an attempt to create a model for Brody disease, the mouse ATP2A1 gene was targeted to generate a SERCA1-null mutant mouse line. In contrast to humans, term SERCA1-null mice had progressive cyanosis and gasping respiration and succumbed from respiratory failure shortly after birth. The percentage of affected homozygote SERCA1(-/-) mice was consistent with predicted Mendelian inheritance. A survey of multiple organs from 10-, 15-, and 18-day embryos revealed no morphological abnormalities, but analysis of the lungs in term mice revealed diffuse congestion and epithelial hypercellularity and studies of the diaphragm muscle revealed prominent hypercontracted regions in scattered fibers and increased fiber size variability. The V(max) of Ca(2+) transport activity in mutant diaphragm and skeletal muscle was reduced by 80% compared with wild-type muscle, and the contractile response to electrical stimulation under physiological conditions was reduced dramatically in mutant diaphragm muscle. No compensatory responses were detected in analysis of mRNAs encoding other Ca(2+) handling proteins or of protein levels. Expression of ATP2A1 is largely restricted to type II fibers, which predominate in normal mouse diaphragm. The absence of SERCA1 in type II fibers, and the absence of compensatory increases in other Ca(2+) handling proteins, coupled with the marked increase in contractile function required of the diaphragm muscle to support postnatal respiration, can account for respiratory failure in term SERCA1-null mice.
PMID: 12556521
ISSN: 0021-9258
CID: 3799952