Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14085


Patterning the heart field in zebrafish [Meeting Abstract]

Yelon, D; Keegan, BR; Feldman, JL
ISI:000181733101670
ISSN: 0892-6638
CID: 36587

Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion

Lieu, Hsiao D; Withycombe, Shannon K; Walker, Quinn; Rong, James X; Walzem, Rosemary L; Wong, Jinny S; Hamilton, Robert L; Fisher, Edward A; Young, Stephen G
BACKGROUND: LDL receptor-deficient 'apolipoprotein (apo)-B100-only' mice (Ldlr-/-Apob100/100 have elevated LDL cholesterol levels on a chow diet and develop severe aortic atherosclerosis. We hypothesized that both the hypercholesterolemia and the susceptibility to atherosclerosis could be eliminated by switching off hepatic lipoprotein production. METHODS AND RESULTS: We bred Ldlr-/-Apob100/100 mice that were homozygous for a conditional allele for Mttp (the gene for microsomal triglyceride transfer protein) and the inducible Mx1-Cre transgene. In these animals, which we called 'Reversa mice,' the hypercholesterolemia could be reversed, without modifying the diet or initiating a hypolipidemic drug, by the transient induction of Cre expression in the liver. After Cre induction, hepatic Mttp expression was virtually eliminated (as judged by quantitative real-time PCR), hepatic lipoprotein secretion was abolished (as judged by electron microscopy), and LDLs were virtually eliminated from the plasma. Intestinal lipoprotein production was unaffected. In mice fed a chow diet, Cre induction reduced plasma cholesterol levels from 233.9+/-46.0 to 37.2+/-6.5 mg/dL. In mice fed a high-fat diet, cholesterol levels fell from 525.7+/-32.2 to 100.6+/-14.3 mg/dL. The elimination of hepatic lipoprotein production completely prevented both the development of atherosclerosis and the changes in gene expression that accompany atherogenesis. CONCLUSIONS: We developed mice in which hypercholesterolemia can be reversed with a genetic switch. These mice will be useful for understanding gene-expression changes that accompany the reversal of hypercholesterolemia and atherosclerosis
PMID: 12628954
ISSN: 1524-4539
CID: 37274

Chemokine signaling: rules of attraction

Schier, Alexander F
The chemokine SDF-1 and its receptor CXCR4 control cell migration in the immune and nervous systems. Recent studies in zebrafish have shown that SDF-1 and CXCR4 also guide the migration of germ cells and sensory organs of the lateral line
PMID: 12620211
ISSN: 0960-9822
CID: 39277

Stress-induced gene expression requires programmed recovery from translational repression

Novoa, Isabel; Zhang, Yuhong; Zeng, Huiqing; Jungreis, Rivka; Harding, Heather P; Ron, David
Active repression of protein synthesis protects cells against protein malfolding during endoplasmic reticulum stress, nutrient deprivation and oxidative stress. However, long-term adaptation to these conditions requires synthesis of new stress-induced proteins. Phosphorylation of the alpha-subunit of translation initiation factor 2 (eIF2alpha) represses translation in diverse stressful conditions. GADD34 is a stress-inducible regulatory subunit of a holophosphatase complex that dephosphorylates eIF2alpha, and has been hypothesized to play a role in translational recovery. Here, we report that GADD34 expression correlated temporally with eIF2alpha dephosphorylation late in the stress response. Inactivation of both alleles of GADD34 prevented eIF2alpha dephosphorylation and blocked the recovery of protein synthesis, normally observed late in the stress response. Furthermore, defective recovery of protein synthesis markedly impaired translation of stress-induced proteins and interfered with programmed activation of stress-induced genes in the GADD34 mutant cells. These observations indicate that GADD34 controls a programmed shift from translational repression to stress-induced gene expression, and reconciles the apparent contradiction between the translational and transcriptional arms of cellular stress responses
PMCID:150345
PMID: 12606582
ISSN: 0261-4189
CID: 38135

Identification of a tight junction-associated guanine nucleotide exchange factor that activates Rho and regulates paracellular permeability

Benais-Pont, Gaelle; Punn, Anu; Flores-Maldonado, Catalina; Eckert, Judith; Raposo, Graca; Fleming, Tom P; Cereijido, Marcelino; Balda, Maria S; Matter, Karl
Rho family GTPases are important regulators of epithelial tight junctions (TJs); however, little is known about how the GTPases themselves are controlled during TJ assembly and function. We have identified and cloned a canine guanine nucleotide exchange factor (GEF) of the Dbl family of proto-oncogenes that activates Rho and associates with TJs. Based on sequence similarity searches and immunological and functional data, this protein is the canine homologue of human GEF-H1 and mouse Lfc, two previously identified Rho-specific exchange factors known to associate with microtubules in nonpolarized cells. In agreement with these observations, immunofluorescence of proliferating MDCK cells revealed that the endogenous canine GEF-H1/Lfc associates with mitotic spindles. Functional analysis based on overexpression and RNA interference in polarized MDCK cells revealed that this exchange factor for Rho regulates paracellular permeability of small hydrophilic tracers. Although overexpression resulted in increased size-selective paracellular permeability, such cell lines exhibited a normal overall morphology and formed fully assembled TJs as determined by measuring transepithelial resistance and by immunofluorescence and freeze-fracture analysis. These data indicate that GEF-H1/Lfc is a component of TJs and functions in the regulation of epithelial permeability.
PMCID:2173357
PMID: 12604587
ISSN: 0021-9525
CID: 523332

Expression of the coxsackie and adenovirus receptor in human astrocytic tumors and xenografts

Fuxe, Jonas; Liu, Lu; Malin, Stephen; Philipson, Lennart; Collins, V Peter; Pettersson, Ralf F
The sensitivity of human tissues and tumors to infection with type C adenoviruses correlates with the expression of the human coxsackie B- and adenovirus receptor, hCAR. HCAR is heterogeneously expressed in various tissues and types of human cancer cells, which has implications for the use of adenoviruses as vectors in cancer gene therapy. Using immunoblotting, real-time PCR, FACS-analysis and sensitivity to infection with adenovirus-lacZ, we analyzed the expression level of hCAR in glioma Grade IV cell lines. With real-time PCR, we also analyzed hCAR expression in primary human astrocytomas of different malignancy grades, as well as in their xenograft derivatives. Analysis of a set of 10 cell lines showed great variation in hCAR expression. Susceptibility to Ad5lacZ correlated well with hCAR expression, whereas no correlation was observed with the expression of alphavbeta3/alphavbeta5 integrins, proposed to function as co-receptors for adenoviruses. A great variation of CAR expression was also observed in primary astrocytomas of different malignancy grades. The mean value of CAR expression was significantly lower in 22 Grade IV tumors as compared to the values for 6 Grade II (p = 0.01) and 6 Grade III (p = 0.01) tumors. When the hCAR expression in 11 xenografts derived from Grade IV gliomas were compared to the levels detected in the original parental tumors, a mean 12-fold higher expression was seen in the xenografts (P = 0.01). Two xenografts with low hCAR expression grew considerably faster than the hCAR-expressing cells. Our results have relevance for the use of adenoviruses in gene therapy against astrocytomas
PMID: 12516090
ISSN: 0020-7136
CID: 134694

Comparative expression analysis of Adh3 during arthropod, urochordate, cephalochordate, and vertebrate development challenges its predicted housekeeping role

Cañestro, Cristian; Godoy, Laura; Gonzàlez-Duarte, Roser; Albalat, Ricard
Gene and genome duplications in the vertebrate lineage explain the complexity of extant gene families. Among these, the medium-chain alcohol dehydrogenase (ADH), which expanded by tandem duplications after the cephalochordate-vertebrate split, is a good model with which to analyze the evolution of gene function. Although the ancestral member of this family, ADH3, has been strictly conserved throughout animal evolution, its physiological role is still controversial. Previous evidence indicates that it contributes to formaldehyde cytoprotection, retinoic acid metabolism, and nitric oxide homeostasis. We performed in situ hybridization during Drosophila, ascidian (Ciona intestinalis), and zebrafish (Danio rerio) development. We showed that Adh3 expression was restricted to the fat body in Drosophila embryos at stage 17 and to the anterior endoderm in C. intestinalis tail bud, whereas in the zebrafish 2.5-day larvae the signal appeared widespread. A more comprehensive expression analysis including amphioxus and mice revealed that ancestral Adh3 was tissue specific, whereas a widespread expression was later attained in vertebrates. These variations occurred concomitantly with the expansion of the ADH family and the acquisition of new functions but were unlinked to the genomic changes that led to the transition from fractional to global methylation in vertebrates. Our data challenge the housekeeping role of ADH3 and question its involvement in the prevertebrate retinoic acid pathway.
PMID: 12622732
ISSN: 1520-541x
CID: 3888132

An integrated stress response regulates amino acid metabolism and resistance to oxidative stress

Harding, Heather P; Zhang, Yuhong; Zeng, Huiquing; Novoa, Isabel; Lu, Phoebe D; Calfon, Marcella; Sadri, Navid; Yun, Chi; Popko, Brian; Paules, Richard; Stojdl, David F; Bell, John C; Hettmann, Thore; Leiden, Jeffrey M; Ron, David
Eukaryotic cells respond to unfolded proteins in their endoplasmic reticulum (ER stress), amino acid starvation, or oxidants by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). This adaptation inhibits general protein synthesis while promoting translation and expression of the transcription factor ATF4. Atf4(-/-) cells are impaired in expressing genes involved in amino acid import, glutathione biosynthesis, and resistance to oxidative stress. Perk(-/-) cells, lacking an upstream ER stress-activated eIF2alpha kinase that activates Atf4, accumulate endogenous peroxides during ER stress, whereas interference with the ER oxidase ERO1 abrogates such accumulation. A signaling pathway initiated by eIF2alpha phosphorylation protects cells against metabolic consequences of ER oxidation by promoting the linked processes of amino acid sufficiency and resistance to oxidative stress
PMID: 12667446
ISSN: 1097-2765
CID: 39258

Expanding the association between the APOE gene and the risk of Alzheimer's disease: possible roles for APOE promoter polymorphisms and alterations in APOE transcription

Laws, Simon M; Hone, Eugene; Gandy, Sam; Martins, Ralph N
Alzheimer's disease (AD) is the most commonly diagnosed form of dementia in the elderly. Predominantly this disease is sporadic in nature with only a small percentage of patients exhibiting a familial trait. Early-onset AD may be explained by single gene defects; however, most AD cases are late onset (> 65 years) and, although there is no known definite cause for this form of the disease, there are several known risk factors. Of these, the epsilon4 allele of the apolipoprotein E (apoE) gene (APOE) is a major risk factor. The epsilon4 allele of APOE is one of three (epsilon2 epsilon3 and epsilon4) common alleles generated by cysteine/arginine substitutions at two polymorphic sites. The possession of the epsilon 4 allele is recognized as the most common identifiable genetic risk factor for late-onset AD across most populations. Unlike the pathogenic mutations in the amyloid precursor or those in the presenilins, APOE epsilon4 alleles increase the risk for AD but do not guarantee disease, even when present in homozygosity. In addition to the cysteine/arginine polymorphisms at the epsilon2/epsilon3/epsilon4 locus, polymorphisms within the proximal promoter of the APOE gene may lead to increased apoE levels by altering transcription of the APOE gene. Here we review the genetic and biochemical evidence supporting the hypothesis that regulation of apoE protein levels may contribute to the risk of AD, distinct from the well known polymorphisms at the epsilon2/epsilon3/epsilon4 locus
PMID: 12614323
ISSN: 0022-3042
CID: 139877

Power-line frequency electromagnetic fields do not induce changes in phosphorylation, localization, or expression of the 27-kilodalton heat shock protein in human keratinocytes

Shi, Biao; Farboud, Behnom; Nuccitelli, Richard; Isseroff, R Rivkah
The linkage of the exposure to the power-line frequency (50-60 Hz) electromagnetic fields (EMF) with human cancers remains controversial after more than 10 years of study. The in vitro studies on the adverse effects of EMF on human cells have not yielded a clear conclusion. In this study, we investigated whether power-line frequency EMF could act as an environmental insult to invoke stress responses in human keratinocytes using the 27-kDa heat shock protein (HSP27) as a stress marker. After exposure to 1 gauss (100 micro T) EMF from 20 min to 24 hr, the isoform pattern of HSP27 in keratinocytes remained unchanged, suggesting that EMF did not induce the phosphorylation of this stress protein. EMF exposure also failed to induce the translocation of HSP27 from the cytoplasm to the nucleus. Moreover, EMF exposure did not increase the abundance of HSP27 in keratinocytes. In addition, we found no evidence that EMF exposure enhanced the level of the 70-kDa heat shock protein (HSP70) in breast or leukemia cells as reported previously. Therefore, in this study we did not detect any of a number of stress responses in human keratinocytes exposed to power-line frequency EMF
PMCID:1241383
PMID: 12611655
ISSN: 0091-6765
CID: 132998