Searched for: school:SOM
Department/Unit:Neuroscience Institute
Amelioration of tau related pathology with a novel anti-prion protein monoclonal antibody in an AD mouse model
Boutajangout, Allal; Zhang, Wei; Abdali, Wed; Kim, Justin Sung Tae; Prelli, Frances; Wisniewski, Thomas
ORIGINAL:0015802
ISSN: 1552-5279
CID: 5297202
De novo mutations in childhood cases of sudden unexplained death that disrupt intracellular Ca2+ regulation
Halvorsen, Matthew; Gould, Laura; Wang, Xiaohan; Grant, Gariel; Moya, Raquel; Rabin, Rachel; Ackerman, Michael J; Tester, David J; Lin, Peter T; Pappas, John G; Maurano, Matthew T; Goldstein, David B; Tsien, Richard W; Devinsky, Orrin
Sudden unexplained death in childhood (SUDC) is an understudied problem. Whole-exome sequence data from 124 "trios" (decedent child, living parents) was used to test for excessive de novo mutations (DNMs) in genes involved in cardiac arrhythmias, epilepsy, and other disorders. Among decedents, nonsynonymous DNMs were enriched in genes associated with cardiac and seizure disorders relative to controls (odds ratio = 9.76, P = 2.15 × 10-4). We also found evidence for overtransmission of loss-of-function (LoF) or previously reported pathogenic variants in these same genes from heterozygous carrier parents (11 of 14 transmitted, P = 0.03). We identified a total of 11 SUDC proband genotypes (7 de novo, 1 transmitted parental mosaic, 2 transmitted parental heterozygous, and 1 compound heterozygous) as pathogenic and likely contributory to death, a genetic finding in 8.9% of our cohort. Two genes had recurrent missense DNMs, RYR2 and CACNA1C Both RYR2 mutations are pathogenic (P = 1.7 × 10-7) and were previously studied in mouse models. Both CACNA1C mutations lie within a 104-nt exon (P = 1.0 × 10-7) and result in slowed L-type calcium channel inactivation and lower current density. In total, six pathogenic DNMs can alter calcium-related regulation of cardiomyocyte and neuronal excitability at a submembrane junction, suggesting a pathway conferring susceptibility to sudden death. There was a trend for excess LoF mutations in LoF intolerant genes, where ≥1 nonhealthy sample in denovo-db has a similar variant (odds ratio = 6.73, P = 0.02); additional uncharacterized genetic causes of sudden death in children might be discovered with larger cohorts.
PMID: 34930847
ISSN: 1091-6490
CID: 5108732
Bidirectional control of infant rat social behavior via dopaminergic innervation of the basolateral amygdala
Opendak, Maya; Raineki, Charlis; Perry, Rosemarie E; Rincón-Cortés, Millie; Song, Soomin C; Zanca, Roseanna M; Wood, Emma; Packard, Katherine; Hu, Shannon; Woo, Joyce; Martinez, Krissian; Vinod, K Yaragudri; Brown, Russell W; Deehan, Gerald A; Froemke, Robert C; Serrano, Peter A; Wilson, Donald A; Sullivan, Regina M
Social interaction deficits seen in psychiatric disorders emerge in early-life and are most closely linked to aberrant neural circuit function. Due to technical limitations, we have limited understanding of how typical versus pathological social behavior circuits develop. Using a suite of invasive procedures in awake, behaving infant rats, including optogenetics, microdialysis, and microinfusions, we dissected the circuits controlling the gradual increase in social behavior deficits following two complementary procedures-naturalistic harsh maternal care and repeated shock alone or with an anesthetized mother. Whether the mother was the source of the adversity (naturalistic Scarcity-Adversity) or merely present during the adversity (repeated shock with mom), both conditions elevated basolateral amygdala (BLA) dopamine, which was necessary and sufficient in initiating social behavior pathology. This did not occur when pups experienced adversity alone. These data highlight the unique impact of social adversity as causal in producing mesolimbic dopamine circuit dysfunction and aberrant social behavior.
PMID: 34706218
ISSN: 1097-4199
CID: 5033412
insomniac links the development and function of a sleep regulatory circuit
Li, Qiuling; Jang, Hyunsoo; Lim, Kayla Y; Lessing, Alexie; Stavropoulos, Nicholas
Although many genes are known to influence sleep, when and how they impact sleep-regulatory circuits remain ill-defined. Here we show that Insomniac (Inc), a conserved adaptor for the autism-associated Cul3 ubiquitin ligase, acts in a restricted period of neuronal development to impact sleep in adult Drosophila. The loss of inc causes structural and functional alterations within the mushroom body, a center for sensory integration, associative learning, and sleep regulation. In inc mutants, mushroom body neurons are produced in excess, develop anatomical defects that impede circuit assembly, and are unable to promote sleep when activated in adulthood. Our findings link neurogenesis and postmitotic development of sleep-regulatory neurons to their adult function and suggest that developmental perturbations of circuits that couple sensory inputs and sleep may underlie sleep dysfunction in neurodevelopmental disorders.
PMID: 34908527
ISSN: 2050-084x
CID: 5109722
High-resolution fluorescence-guided transcranial ultrasound mapping in the live mouse brain
Estrada, Hector; Robin, Justine; Özbek, Ali; Chen, Zhenyue; Marowsky, Anne; Zhou, Quanyu; Beck, Daniel; le Roy, Beau; Arand, Michael; Shoham, Shy; Razansky, Daniel
[Figure: see text].
PMCID:8654306
PMID: 34878843
ISSN: 2375-2548
CID: 5110292
Motion vision: Pinning down motion computation in an ever-changing circuit
Nagel, Katherine
A new electrophysiological study of the Drosophila visual system, recording from columnar inputs to motion-detecting neurons, has provided new insights into the computations that underlie motion vision.
PMID: 34875241
ISSN: 1879-0445
CID: 5110192
Valid Acoustic Models of Cochlear Implants: One Size Does Not Fit All
Svirsky, Mario A; Capach, Nicole Hope; Neukam, Jonathan D; Azadpour, Mahan; Sagi, Elad; Hight, Ariel Edward; Glassman, E Katelyn; Lavender, Annette; Seward, Keena P; Miller, Margaret K; Ding, Nai; Tan, Chin-Tuan; Fitzgerald, Matthew B
HYPOTHESIS/OBJECTIVE:This study tests the hypothesis that it is possible to find tone or noise vocoders that sound similar and result in similar speech perception scores to a cochlear implant (CI). This would validate the use of such vocoders as acoustic models of CIs. We further hypothesize that those valid acoustic models will require a personalized amount of frequency mismatch between input filters and output tones or noise bands. BACKGROUND:Noise or tone vocoders have been used as acoustic models of CIs in hundreds of publications but have never been convincingly validated. METHODS:Acoustic models were evaluated by single-sided deaf CI users who compared what they heard with the CI in one ear to what they heard with the acoustic model in the other ear. We evaluated frequency-matched models (both all-channel and 6-channel models, both tone and noise vocoders) as well as self-selected models that included an individualized level of frequency mismatch. RESULTS:Self-selected acoustic models resulted in similar levels of speech perception and similar perceptual quality as the CI. These models also matched the CI in terms of perceived intelligibility, harshness, and pleasantness. CONCLUSION/CONCLUSIONS:Valid acoustic models of CIs exist, but they are different from the models most widely used in the literature. Individual amounts of frequency mismatch may be required to optimize the validity of the model. This may be related to the basalward frequency mismatch experienced by postlingually deaf patients after cochlear implantation.
PMID: 34766938
ISSN: 1537-4505
CID: 5050812
Sleep replay reveals premotor circuit structure for a skilled behavior
Elmaleh, Margot; Kranz, Devorah; Asensio, Ariadna Corredera; Moll, Felix W; Long, Michael A
Neural circuits often exhibit sequences of activity, but the contribution of local networks to their generation remains unclear. In the zebra finch, song-related premotor sequences within HVC may result from some combination of local connectivity and long-range thalamic inputs from nucleus uvaeformis (Uva). Because lesions to either structure abolish song, we examine "sleep replay" using high-density recording methods to reconstruct precise song-related events. Replay activity persists after the upstream nucleus interfacialis of the nidopallium is lesioned and slows when HVC is cooled, demonstrating that HVC provides temporal structure for these events. To further gauge the importance of intra-HVC connectivity for shaping network dynamics, we lesion Uva during sleep and find that residual replay sequences could span syllable boundaries, supporting a model in which HVC can propagate sequences throughout the duration of the song. Our results highlight the power of studying offline activity to investigate behaviorally relevant circuit organization.
PMCID:8639717
PMID: 34626537
ISSN: 1097-4199
CID: 5074572
Diagnostic abdominal MR imaging on a prototype low-field 0.55Â T scanner operating at two different gradient strengths
Chandarana, Hersh; Bagga, Barun; Huang, Chenchan; Dane, Bari; Petrocelli, Robert; Bruno, Mary; Keerthivasan, Mahesh; Grodzki, David; Block, Kai Tobias; Stoffel, David; Sodickson, Daniel K
PURPOSE:To develop a protocol for abdominal imaging on a prototype 0.55 T scanner and to benchmark the image quality against conventional 1.5 T exam. METHODS:In this prospective IRB-approved HIPAA-compliant study, 10 healthy volunteers were recruited and imaged. A commercial MRI system was modified to operate at 0.55 T (LF) with two different gradient performance levels. Each subject underwent non-contrast abdominal examinations on the 0.55 T scanner utilizing higher gradients (LF-High), lower adjusted gradients (LF-Adjusted), and a conventional 1.5 T scanner. The following pulse sequences were optimized: fat-saturated T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and Dixon T1-weighted imaging (T1WI). Three readers independently evaluated image quality in a blinded fashion on a 5-point Likert scale, with a score of 1 being non-diagnostic and 5 being excellent. An exact paired sample Wilcoxon signed-rank test was used to compare the image quality. RESULTS:Diagnostic image quality (overall image quality score ≥ 3) was achieved at LF in all subjects for T2WI, DWI, and T1WI with no more than one unit lower score than 1.5 T. The mean difference in overall image quality score was not significantly different between LF-High and LF-Adjusted for T2WI (95% CI - 0.44 to 0.44; p = 0.98), DWI (95% CI - 0.43 to 0.36; p = 0.92), and for T1 in- and out-of-phase imaging (95%C I - 0.36 to 0.27; p = 0.91) or T1 fat-sat (water only) images (95% CI - 0.24 to 0.18; p = 1.0). CONCLUSION:Diagnostic abdominal MRI can be performed on a prototype 0.55 T scanner, either with conventional or with reduced gradient performance, within an acquisition time of 10 min or less.
PMID: 34415411
ISSN: 2366-0058
CID: 5048652
Disrupted intrinsic functional brain topology in patients with major depressive disorder
Yang, Hong; Chen, Xiao; Chen, Zuo-Bing; Li, Le; Li, Xue-Ying; Castellanos, Francisco Xavier; Bai, Tong-Jian; Bo, Qi-Jing; Cao, Jun; Chang, Zhi-Kai; Chen, Guan-Mao; Chen, Ning-Xuan; Chen, Wei; Cheng, Chang; Cheng, Yu-Qi; Cui, Xi-Long; Duan, Jia; Fang, Yiru; Gong, Qi-Yong; Guo, Wen-Bin; Hou, Zheng-Hua; Hu, Lan; Kuang, Li; Li, Feng; Li, Hui-Xian; Li, Kai-Ming; Li, Tao; Liu, Yan-Song; Liu, Zhe-Ning; Long, Yi-Cheng; Lu, Bin; Luo, Qing-Hua; Meng, Hua-Qing; Peng, Daihui; Qiu, Hai-Tang; Qiu, Jiang; Shen, Yue-Di; Shi, Yu-Shu; Si, Tian-Mei; Tang, Yan-Qing; Wang, Chuan-Yue; Wang, Fei; Wang, Kai; Wang, Li; Wang, Xiang; Wang, Ying; Wang, Yu-Wei; Wu, Xiao-Ping; Wu, Xin-Ran; Xie, Chun-Ming; Xie, Guang-Rong; Xie, Hai-Yan; Xie, Peng; Xu, Xiu-Feng; Yang, Jian; Yao, Jia-Shu; Yao, Shu-Qiao; Yin, Ying-Ying; Yuan, Yong-Gui; Zang, Yu-Feng; Zhang, Ai-Xia; Zhang, Hong; Zhang, Ke-Rang; Zhang, Lei; Zhang, Zhi-Jun; Zhao, Jing-Ping; Zhou, Rubai; Zhou, Yi-Ting; Zhu, Jun-Juan; Zhu, Zhi-Chen; Zou, Chao-Jie; Zuo, Xi-Nian; Yan, Chao-Gan
Aberrant topological organization of whole-brain networks has been inconsistently reported in studies of patients with major depressive disorder (MDD), reflecting limited sample sizes. To address this issue, we utilized a big data sample of MDD patients from the REST-meta-MDD Project, including 821 MDD patients and 765 normal controls (NCs) from 16 sites. Using the Dosenbach 160 node atlas, we examined whole-brain functional networks and extracted topological features (e.g., global and local efficiency, nodal efficiency, and degree) using graph theory-based methods. Linear mixed-effect models were used for group comparisons to control for site variability; robustness of results was confirmed (e.g., multiple topological parameters, different node definitions, and several head motion control strategies were applied). We found decreased global and local efficiency in patients with MDD compared to NCs. At the nodal level, patients with MDD were characterized by decreased nodal degrees in the somatomotor network (SMN), dorsal attention network (DAN) and visual network (VN) and decreased nodal efficiency in the default mode network (DMN), SMN, DAN, and VN. These topological differences were mostly driven by recurrent MDD patients, rather than first-episode drug naive (FEDN) patients with MDD. In this highly powered multisite study, we observed disrupted topological architecture of functional brain networks in MDD, suggesting both locally and globally decreased efficiency in brain networks.
PMID: 34385597
ISSN: 1476-5578
CID: 5006242