Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14019


BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells

Tao, Bo; Kraehling, Jan R; Ghaffari, Siavash; Ramirez, Cristina M; Lee, Sungwoon; Fowler, Joseph W; Lee, Warren L; Fernandez-Hernando, Carlos; Eichmann, Anne; Sessa, William C
Bone morphogenetic protein-9 (BMP-9) is a circulating cytokine that is known to play an essential role in the endothelial homeostasis and the binding of BMP-9 to the receptor activin-like kinase 1 (ALK-1) promotes endothelial cell quiescence. Previously, using an unbiased screen, we identified ALK-1 as a high-capacity receptor for low-density lipoprotein (LDL) in endothelial cells that mediates its transcytosis in a nondegradative manner. Here we examine the crosstalk between BMP-9 and LDL and how it influences their interactions with ALK-1. Treatment of endothelial cells with BMP-9 triggers the extensive endocytosis of ALK-1, and it is mediated by caveolin-1 (CAV-1) and dynamin-2 (DNM2) but not clathrin heavy chain. Knockdown of CAV-1 reduces BMP-9-mediated internalization of ALK-1, BMP-9-dependent signaling and gene expression. Similarly, treatment of endothelial cells with LDL reduces BMP-9-induced SMAD1/5 phosphorylation and gene expression and silencing of CAV-1 and DNM2 diminishes LDL-mediated ALK-1 internalization. Interestingly, BMP-9-mediated ALK-1 internalization strongly re-duces LDL transcytosis to levels seen with ALK-1 deficiency. Thus, BMP-9 levels can control cell surface levels of ALK-1, via CAV-1, to regulate both BMP-9 signaling and LDL transcytosis.
PMID: 33097593
ISSN: 1083-351x
CID: 4775392

Two Unconventional Metallothioneins in the Apple Snail Pomacea bridgesii Have Lost Their Metal Specificity during Adaptation to Freshwater Habitats

García-Risco, Mario; Calatayud, Sara; Niederwanger, Michael; Albalat, Ricard; Palacios, Ã’scar; Capdevila, Mercè; Dallinger, Reinhard
Metallothioneins (MTs) are a diverse group of proteins responsible for the control of metal homeostasis and detoxification. To investigate the impact that environmental conditions might have had on the metal-binding abilities of these proteins, we have characterized the MTs from the apple snail Pomacea bridgesii, a gastropod species belonging to the class of Caenogastropoda with an amphibious lifestyle facing diverse situations of metal bioavailability. P. bridgesii has two structurally divergent MTs, named PbrMT1 and PbrMT2, that are longer than other gastropod MTs due to the presence of extra sequence motifs and metal-binding domains. We have characterized the Zn(II), Cd(II), and Cu(I) binding abilities of these two MTs after their heterologous expression in E. coli. Our results have revealed that despite their structural differences, both MTs share an unspecific metal-binding character, and a great ability to cope with elevated amounts of different metal ions. Our analyses have also revealed slight divergences in their metal-binding features: PbrMT1 shows a more pronounced Zn(II)-thionein character than PbrMT2, while the latter has a stronger Cu(I)-thionein character. The characterization of these two unconventional PbrMTs supports the loss of the metal-binding specificity during the evolution of the MTs of the Ampullariid family, and further suggests an evolutionary link of this loss with the adaptation of these gastropod lineages to metal-poor freshwater habitats.
PMID: 33374169
ISSN: 1422-0067
CID: 4732122

Emergence of Neuronal Diversity during Vertebrate Brain Development

Raj, Bushra; Farrell, Jeffrey A; Liu, Jialin; El Kholtei, Jakob; Carte, Adam N; Navajas Acedo, Joaquin; Du, Lucia Y; McKenna, Aaron; Relić, Đorđe; Leslie, Jessica M; Schier, Alexander F
Neurogenesis comprises many highly regulated processes including proliferation, differentiation, and maturation. However, the transcriptional landscapes underlying brain development are poorly characterized. We describe a developmental single-cell catalog of ∼220,000 zebrafish brain cells encompassing 12 stages from embryo to larva. We characterize known and novel gene markers for ∼800 clusters and provide an overview of the diversification of neurons and progenitors across these time points. We also introduce an optimized GESTALT lineage recorder that enables higher expression and recovery of Cas9-edited barcodes to query lineage segregation. Cell type characterization indicates that most embryonic neural progenitor states are transitory and transcriptionally distinct from neural progenitors of post-embryonic stages. Reconstruction of cell specification trajectories reveals that late-stage retinal neural progenitors transcriptionally overlap cell states observed in the embryo. The zebrafish brain development atlas provides a resource to define and manipulate specific subsets of neurons and to uncover the molecular mechanisms underlying vertebrate neurogenesis.
PMID: 33068532
ISSN: 1097-4199
CID: 4641832

Quantitative Imaging of MS2-Tagged hTR in Cajal Bodies: Photobleaching and Photoactivation

Smith, Michael; Querido, Emmanuelle; Chartrand, Pascal; Sfeir, Agnel
Advances in imaging technologies, gene editing, and fluorescent molecule development have made real-time imaging of nucleic acids practical. Here, we detail methods for imaging the human telomerase RNA template, hTR via the use of three inserted MS2 stem loops and cognate MS2 coat protein (MCP) tagged with superfolder GFP or photoactivatable GFP. These technologies enable tracking of the dynamics of RNA species through Cajal bodies and offer insight into their residence time in Cajal bodies through photobleaching and photoactivation experiments. For complete details on the use and execution of this protocol, please refer to Laprade et al. (2020).
PMCID:7756913
PMID: 33377008
ISSN: 2666-1667
CID: 4936462

Identification and characterization of GAL4 drivers that mark distinct cell types and regions in the Drosophila adult gut

Lim, Seung Yeon; You, Hyejin; Lee, Jinhyeong; Lee, Jaejin; Lee, Yoojin; Lee, Kyung-Ah; Kim, Boram; Lee, Ji-Hoon; Jeong, JiHyeon; Jang, Sooin; Kim, Byoungsoo; Choi, Hyungjun; Hwang, Gayoung; Choi, Min Sung; Yoon, Sung-Eun; Kwon, Jae Young; Lee, Won-Jae; Kim, Young-Joon; Suh, Greg S B
The gastrointestinal tract in the adult Drosophila serves as a model system for exploring the mechanisms underlying digestion, absorption and excretion, stem cell plasticity, and inter-organ communication, particularly through the gut-brain axis. It is also useful for studying the cellular and adaptive responses to dietary changes, alterations in microbiota and immunity, and systematic and endocrine signals. Despite the various cell types and distinct regions in the gastrointestinal tract, few tools are available to target and manipulate the activity of each cell type and region, and their gene expression. Here, we report 353 GAL4 lines and several split-GAL4 lines that are expressed in enteric neurons (ENs), progenitors (ISCs and EBs), enterocytes (ECs), enteroendocrine cells (EEs), or/and other cell types that are yet to be identified in distinct regions of the gut. We had initially collected approximately 600 GAL4 lines that may be expressed in the gut based on RNA sequencing data, and then crossed them to UAS-GFP to perform immunohistochemistry to identify those that are expressed selectively in the gut. The cell types and regional expression patterns that are associated with the entire set of GAL4 drivers and split-GAL4 combinations are annotated online at http://kdrc.kr/index.php (K-Gut Project). This GAL4 resource can be used to target specific populations of distinct cell types in the fly gut, and therefore, should permit a more precise investigation of gut cells that regulate important biological processes.
PMID: 33326321
ISSN: 1563-5260
CID: 4726662

Scaffold association factor B (SAFB) is required for expression of prenyltransferases and RAS membrane association

Zhou, Mo; Kuruvilla, Leena; Shi, Xiarong; Viviano, Stephen; Ahearn, Ian M; Amendola, Caroline R; Su, Wenjuan; Badri, Sana; Mahaffey, James; Fehrenbacher, Nicole; Skok, Jane; Schlessinger, Joseph; Turk, Benjamin E; Calderwood, David A; Philips, Mark R
Inhibiting membrane association of RAS has long been considered a rational approach to anticancer therapy, which led to the development of farnesyltransferase inhibitors (FTIs). However, FTIs proved ineffective against KRAS-driven tumors. To reveal alternative therapeutic strategies, we carried out a genome-wide CRISPR-Cas9 screen designed to identify genes required for KRAS4B membrane association. We identified five enzymes in the prenylation pathway and SAFB, a nuclear protein with both DNA and RNA binding domains. Silencing SAFB led to marked mislocalization of all RAS isoforms as well as RAP1A but not RAB7A, a pattern that phenocopied silencing FNTA, the prenyltransferase α subunit shared by farnesyltransferase and geranylgeranyltransferase type I. We found that SAFB promoted RAS membrane association by controlling FNTA expression. SAFB knockdown decreased GTP loading of RAS, abrogated alternative prenylation, and sensitized RAS-mutant cells to growth inhibition by FTI. Our work establishes the prenylation pathway as paramount in KRAS membrane association, reveals a regulator of prenyltransferase expression, and suggests that reduction in FNTA expression may enhance the efficacy of FTIs.
PMID: 33257571
ISSN: 1091-6490
CID: 4694022

A multivariable miRNA signature delineates the systemic hemodynamic impact of arteriovenous shunt placement in a pilot study

Henn, Dominic; Abu-Halima, Masood; Kahraman, Mustafa; Falkner, Florian; Fischer, Katharina S; Barrera, Janos A; Chen, Kellen; Gurtner, Geoffrey C; Keller, Andreas; Kneser, Ulrich; Meese, Eckart; Schmidt, Volker J
Arteriovenous (AV) fistulas for hemodialysis can lead to cardiac volume loading and increased serum brain natriuretic peptide (BNP) levels. Whether short-term AV loop placement in patients undergoing microsurgery has an impact on cardiac biomarkers and circulating microRNAs (miRNAs), potentially indicating an increased hemodynamic risk, remains elusive. Fifteen patients underwent AV loop placement with delayed free flap anastomosis for microsurgical reconstructions of lower extremity soft-tissue defects. N-terminal pro-BNP (NT-proBNP), copeptin (CT-proAVP), and miRNA expression profiles were determined in the peripheral blood before and after AV loop placement. MiRNA expression in the blood was correlated with miRNA expression from AV loop vascular tissue. Serum NT-proBNP and copeptin levels exceeded the upper reference limit after AV loop placement, with an especially strong NT-proBNP increase in patients with preexistent cardiac diseases. A miRNA signature of 4 up-regulated (miR-3198, miR-3127-5p, miR-1305, miR-1288-3p) and 2 down-regulated miRNAs (miR30a-5p, miR-145-5p) which are related to cardiovascular physiology, showed a significant systemic deregulation in blood and venous tissue after AV loop placement. AV loop placement causes serum elevations of NT-proBNP, copeptin as well as specific circulating miRNAs, indicating a potentially increased hemodynamic risk for patients with cardiovascular comorbidities, if free flap anastomosis is delayed.
PMCID:7733519
PMID: 33311598
ISSN: 2045-2322
CID: 4717472

Calcium depletion challenges endoplasmic reticulum proteostasis by destabilising BiP-substrate complexes

Preissler, Steffen; Rato, Claudia; Yan, Yahui; Perera, Luke A; Czako, Aron; Ron, David
The metazoan endoplasmic reticulum (ER) serves both as a hub for maturation of secreted proteins and as an intracellular calcium storage compartment, facilitating calcium release-dependent cellular processes. ER calcium depletion robustly activates the unfolded protein response (UPR). However, it is unclear how fluctuations in ER calcium impact organellar proteostasis. Here we report that calcium selectively affects the dynamics of the abundant metazoan ER Hsp70 chaperone BiP, by enhancing its affinity for ADP. In the calcium-replete ER, ADP rebinding to post-ATP hydrolysis BiP-substrate complexes competes with ATP binding during both spontaneous and co-chaperone-assisted nucleotide exchange, favouring substrate retention. Conversely, in the calcium-depleted ER, relative acceleration of ADP-to-ATP exchange favours substrate release. These findings explain the rapid dissociation of certain substrates from BiP observed in the calcium-depleted ER and suggest a mechanism for tuning ER quality control and coupling UPR activity to signals that mobilise ER calcium in secretory cells.
PMID: 33295873
ISSN: 2050-084x
CID: 4709902

Context-Dependent Requirement of Euchromatic Histone Methyltransferase Activity during Reprogramming to Pluripotency

Vidal, Simon E; Polyzos, Alexander; Chatterjee, Kaushiki; Ee, Ly-Sha; Swanzey, Emily; Morales-Valencia, Jorge; Wang, Hongsu; Parikh, Chaitanya N; Amlani, Bhishma; Tu, Shengjiang; Gong, Yixiao; Snetkova, Valentina; Skok, Jane A; Tsirigos, Aristotelis; Kim, Sangyong; Apostolou, Effie; Stadtfeld, Matthias
Methylation of histone 3 at lysine 9 (H3K9) constitutes a roadblock for cellular reprogramming. Interference with methyltransferases or activation of demethylases by the cofactor ascorbic acid (AA) facilitates the derivation of induced pluripotent stem cells (iPSCs), but possible interactions between specific methyltransferases and AA treatment remain insufficiently explored. We show that chemical inhibition of the methyltransferases EHMT1 and EHMT2 counteracts iPSC formation in an enhanced reprogramming system in the presence of AA, an effect that is dependent on EHMT1. EHMT inhibition during enhanced reprogramming is associated with rapid loss of H3K9 dimethylation, inefficient downregulation of somatic genes, and failed mesenchymal-to-epithelial transition. Furthermore, transient EHMT inhibition during reprogramming yields iPSCs that fail to efficiently give rise to viable mice upon blastocyst injection. Our observations establish novel functions of H3K9 methyltransferases and suggest that a functional balance between AA-stimulated enzymes and EHMTs supports efficient and less error-prone iPSC reprogramming to pluripotency.
PMID: 32976761
ISSN: 2213-6711
CID: 4606132

Affinity maturation is required for pathogenic monovalent IgG4 autoantibody development in myasthenia gravis

Fichtner, Miriam L; Vieni, Casey; Redler, Rachel L; Kolich, Ljuvica; Jiang, Ruoyi; Takata, Kazushiro; Stathopoulos, Panos; Suarez, Pablo A; Nowak, Richard J; Burden, Steven J; Ekiert, Damian C; O'Connor, Kevin C
Pathogenic muscle-specific tyrosine kinase (MuSK)-specific IgG4 autoantibodies in autoimmune myasthenia gravis (MG) are functionally monovalent as a result of Fab-arm exchange. The development of these unique autoantibodies is not well understood. We examined MG patient-derived monoclonal autoantibodies (mAbs), their corresponding germline-encoded unmutated common ancestors (UCAs), and monovalent antigen-binding fragments (Fabs) to investigate how affinity maturation contributes to binding and immunopathology. Mature mAbs, UCA mAbs, and mature monovalent Fabs bound to MuSK and demonstrated pathogenic capacity. However, monovalent UCA Fabs bound to MuSK but did not have measurable pathogenic capacity. Affinity of the UCA Fabs for MuSK was 100-fold lower than the subnanomolar affinity of the mature Fabs. Crystal structures of two Fabs revealed how mutations acquired during affinity maturation may contribute to increased MuSK-binding affinity. These findings indicate that the autoantigen drives autoimmunity in MuSK MG through the accumulation of somatic mutations such that monovalent IgG4 Fab-arm-exchanged autoantibodies reach a high-affinity threshold required for pathogenic capacity.
PMID: 32820331
ISSN: 1540-9538
CID: 4567342