Try a new search

Format these results:

Searched for:

school:SOM

Department/Unit:Cell Biology

Total Results:

14178


eLiXiRs for restraining inflammation [Comment]

Freeman, Mason W; Moore, Kathryn J
PMID: 12563335
ISSN: 1078-8956
CID: 106640

Membrane targeting

Cereijido, M; Contreras, R G; Shoshani, L; Garcia-Villegas, M R
PMID: 12565697
ISSN: 0079-6107
CID: 523342

Apical and basal regulation of the permeability of the retinal pigment epithelium

Peng, Shaomin; Rahner, Christoph; Rizzolo, Lawrence J
PURPOSE: The functional characteristics of tight junctions in the outer blood-retinal barrier change during embryonic development and in the presence of disease. A culture model of developing retinal pigment epithelium (RPE) was used to examine the regulation of the tight junctions. METHODS: RPE from chick embryos was cultured on filters that separated the apical and basal medium compartments. Cultures were maintained in various combinations of serum-free medium, serum-free medium that was conditioned by neural retinas, or serum-free medium that was supplemented with bovine pituitary extract, serum, or various hormones. Function was monitored by the transepithelial electrical resistance (TER) or the permeation of small organic tracers. Structure was monitored by immunofluorescence and freeze-fracture electron microscopy. RESULTS: Functional analysis indicated differences in permeability among RPE of different embryonic age and culture conditions. In serum-free medium, the tight junctions were leaky or failed to form. Barrier properties increased if pituitary extract was added to the basal medium chamber or retina-conditioned medium was added to the apical chamber. Retina-conditioned medium was more effective at organizing tight junctional strands into a continuous network, but bovine pituitary extract appeared to modulate the permeability of that network. In combination, they synergistically elevated the TER to physiological levels. Although the thyroid hormone T3 had no effect, serum in the apical medium chamber inhibited the ability of RPE cells to respond to retina-conditioned medium. CONCLUSIONS: Diffusible factors secreted by the neural retina acted synergistically with basolateral stimulation to regulate the structure and function of RPE tight junctions. Serum on the apical side of the RPE monolayer inhibited the ability of retinal factors to upregulate the tight junction barrier.
PMID: 12556417
ISSN: 0146-0404
CID: 382812

Characterization of aortic root atherosclerosis in ApoE knockout mice: high-resolution in vivo and ex vivo MRM with histological correlation

Itskovich, V V; Choudhury, R P; Aguinaldo, J G S; Fallon, J T; Omerhodzic, S; Fisher, E A; Fayad, Z A
In vivo, cardiac-gated, black-blood, and ex vivo magnetic resonance microscopy (MRM) images of the aortic root, and histopathology data were obtained from 12 transgenic and wild-type (WT) mice. MRM was performed using a black-blood imaging spin-echo sequence with upstream and downstream in-flow saturation pulses to obtain aortic root images in three contrast techniques: proton density-weighted (PDW), T(1)- (T(1)W), and T(2)-weighted (T(2)W). Aortic wall thickness and area were measured and correlated with histopathology data (R > 0.90). Ex vivo lesion components (lipid core, fibrous tissue, and cell tissue) were identified and characterized by differing image contrast in PDW, T(1)W, and T(2)W MRM, and by histopathology. The differences between WT and transgenic mice for maximal wall thickness and area were statistically significant (P < 0.05). This study demonstrates the feasibility of in vivo murine aortic root lesion assessment and ex vivo plaque characterization by MRM
PMID: 12541260
ISSN: 0740-3194
CID: 37275

Serial, noninvasive, in vivo magnetic resonance microscopy detects the development of atherosclerosis in apolipoprotein E-deficient mice and its progression by arterial wall remodeling

Choudhury, Robin P; Fayad, Zahi A; Aguinaldo, J Gilberto; Itskovich, Vitalii V; Rong, James X; Fallon, John T; Fisher, Edward A
PURPOSE: To test the ability of serial, in vivo magnetic resonance microscopy (MRM) to detect the development of atherosclerosis and quantify its progression in apolipoprotein E-deficient mice. MATERIALS AND METHODS: The abdominal aortae of six ApoE(-/-) and three wild-type (WT) control mice were imaged by MRM at 9.4T. Proton density weighted images were obtained (TR = 2000, TE = 9 msec) using four signal averages. The image resolution was 109 x 109 x 500 microm(3). The six ApoE(-/-) mice underwent serial MRM three to five times over a period < or = 44 weeks. Multiple, anatomically aligned MRM slices (N = 6-11 per time point, total 202) were compared serially in each animal. RESULTS: The abdominal aorta remained free of atherosclerosis until 20 weeks of age but thereafter, atherosclerosis was identified in all ApoE(-/-) mice (P < 0.05 to P < 0.001), but no WT controls. Lesion progression was accompanied by positive remodeling in which atherosclerosis within the aortic wall was accommodated by an increase in total cross sectional area (P < 0.01), while lumen area was unchanged. CONCLUSION: Serial MRM demonstrated the development and progression of atherosclerosis in mouse aorta. Importantly, progression of atherosclerosis could be identified within individual animals. By following the same aortic lesions over time, MRM demonstrated that progression of atherosclerosis in mice is associated with positive arterial remodeling
PMID: 12541225
ISSN: 1053-1807
CID: 37276

Electron microscopy of functional ribosome complexes

Frank, Joachim
Cryoelectron microscopy has made a number of significant contributions to our understanding of the translation process. The method of single-particle reconstruction is particularly well suited for the study of the dynamics of ribosome-ligand interactions. This review follows the events of the functional cycle and discusses the findings in the context provided by the recently published x-ray structures
PMID: 12548625
ISSN: 0006-3525
CID: 66336

Vampire bat salivary plasminogen activator (desmoteplase): a unique fibrinolytic enzyme that does not promote neurodegeneration

Liberatore, Gabriel T; Samson, Andre; Bladin, Christopher; Schleuning, Wolf-Dieter; Medcalf, Robert L
BACKGROUND AND PURPOSE: Tissue-type plasminogen activator (tPA) promotes excitotoxic and ischemic injury within the brain. These findings have implications for the use of tPA in the treatment of acute ischemic stroke. The plasminogen activator from vampire bat (Desmodus rotundus) saliva (D rotundus salivary plasminogen activator [DSPA]; desmoteplase) is an effective plasminogen activator but, in contrast to tPA, is nearly inactive in the absence of a fibrin cofactor. The purpose of this study was to compare the ability of DSPA and tPA to promote kainate- and N-methyl-D-aspartate (NMDA)-induced neurodegeneration in tPA-/- mice and wild-type mice, respectively. METHODS: tPA-/- mice were infused intracerebrally with either tPA or DSPA. The degree of neuronal survival after hippocampal injection of kainate was assessed histochemically. Wild-type mice were used to assess the extent of neuronal damage after intrastriatal injection of NMDA in the presence of tPA or DSPA. Immunohistochemistry and fibrin zymography were used to evaluate DSPA and tPA antigen or activity. RESULTS: Infusion of tPA into tPA-/- mice restored sensitivity to kainate-mediated neurotoxicity and activation of microglia. DSPA was incapable of conferring sensitivity to kainate treatment, even when infused at 10-fold higher molar concentration than tPA. The presence of tPA also increased the lesion volume induced by NMDA injection into the striatum of wild-type mice, whereas DSPA had no effect. CONCLUSIONS: DSPA does not promote kainate- or NMDA-mediated neurotoxicity in vivo. These results provide significant impetus to evaluate DSPA in patients with ischemic stroke.
PMID: 12574572
ISSN: 0039-2499
CID: 171785

Endothelial progenitor cells: the promise of vascular stem cells for plastic surgery

Tepper, Oren M; Galiano, Robert D; Kalka, Christoph; Gurtner, Geoffrey C
PMID: 12560713
ISSN: 0032-1052
CID: 33788

Strain-dependent differences in the efficiency of transgenic mouse production

Auerbach, Anna B; Norinsky, Rada; Ho, Weilan; Losos, Kasia; Guo, Qiuxia; Chatterjee, Samprit; Joyner, Alexandra L
Transgenic mouse production via pronuclear microinjection is a complex process consisting of a number of sequential steps. Many different factors contribute to the effectiveness of each step and thus influence the overall efficiency of transgenic mouse production. The response of egg donor females to superovulation, the fertilization rate, egg survival after injection, ability of manipulated embryos to implant and develop to term, and concentration and purity of the injected DNA all contribute to transgenic production efficiency. We evaluated and compared the efficiency of transgenic mouse production using four different egg donor mouse strains: B6D2/F1 hybrids, Swiss Webster (SW) outbred, and inbred FVB/N and C57BL/6. The data included experiments involving approximately 350 DNA transgene constructs performed by a high capacity core transgenic mouse facility. Significant influences of particular genetic backgrounds on the efficiency of different steps of the production process were found. Except for egg production, FVB/N mice consistently produced the highest efficiency of transgenic mouse production at each step of the process. B6D2/F2 hybrid eggs are also quite efficient, but lyze more frequently than FVB/N eggs after DNA microinjection. SW eggs on the other hand block at the 1-cell stage more often than eggs from the other strains. Finally, using C57BL/6 eggs the main limiting factor is that the fetuses derived from injected eggs do not develop to term as often as the other strains. Based on our studies, the procedure for transgenic mouse production can be modified for each egg donor strain in order to overcome any deficiencies, and thus to increase the overall efficiency of transgenic mouse production
PMID: 12650525
ISSN: 0962-8819
CID: 35028

Expression pattern and biochemical characteristics of a major epidermal retinol dehydrogenase

Markova, Nedialka G; Pinkas-Sarafova, A; Karaman-Jurukovska, N; Jurukovski, V; Simon, M
The biological functions of vitamin A in the epidermis are mediated by all-trans retinoic acid, which is biosynthesized from retinol in two oxidative reactions. The first step involves enzymatic conversion of retinol to retinaldehyde. The physiological significance and relative contributions of the various retinol dehydrogenases to the oxidation of retinol in epidermal cells remain unclear. We report the characterization of a retinol dehydrogenase/reductase of the SDR superfamily, hRoDH-E2, which is abundantly expressed in the epidermis, epidermal appendages and in cultured epidermal keratinocytes. Both in live keratinocytes and in isolated keratinocyte microsomes, where the enzyme normally localizes, hRoDH-E2 functions as a bona fide retinol dehydrogenase. In the prevailing oxidative reaction it recognizes both free- and CRBP-bound retinol, and shows preference toward NADP as a co-substrate. In comparison, hRoDH-E2 retinol dehydrogenase activity in the simple epithelial HEK 293 cells is much lower and in CHO cells is non-existent. hRoDH-E2 transcripts are distributed throughout the epidermal layers but are more abundant in the basal cells. In contrast, the protein is detected predominantly in the basal and the most differentiated living layers. Its synthesis is negatively regulated by retinoic acid. The biochemical properties and the differential expression of hRoDH-E2 in the strata where retinoic acid signaling is critical for epidermal homeostasis support a conclusion that hRoDH-E2 bears the characteristics of the major microsomal retinol dehydrogenase activity in the epidermal keratinocytes in physiological circumstances.
PMID: 12618084
ISSN: 1096-7192
CID: 2503252