Searched for: school:SOM
Department/Unit:Cell Biology
Oxytocin induces embryonic diapause
Minder, Jessica L; Winokur, Sarah B; Stephens, Janaye; Tong, Jie; Cassel, Naomi L; Schuster, Luisa; Issa, Habon A; Cammer, Michael; Khatri, Latika; Moisan, Gaia; Alvarado-Torres, Maria; Aristizábal, Orlando; Wadghiri, Youssef Z; Kim, Sang Yong; Valtcheva, Silvana; Lu, Catherine Pei-Ju; Chao, Moses V; Froemke, Robert C
Embryonic development in many species, including case reports in humans, can be temporarily halted before implantation during a process called diapause. Facultative diapause occurs under conditions of maternal metabolic stress such as nursing. While molecular mechanisms of diapause have been studied, a natural inducing factor has yet to be identified. Here, we show that oxytocin induces embryonic diapause in mice. We show that gestational delays were triggered during nursing or optogenetic stimulation of oxytocin neurons simulating nursing patterns. Mouse blastocysts express oxytocin receptors, and oxytocin induced delayed implantation-like dispersion in cultured embryos. Last, oxytocin receptor-knockout embryos transferred into wild-type surrogates had low survival rates during diapause. Our results indicate that oxytocin coordinates timing of embryonic development with uterine progression through pregnancy, providing an evolutionarily conserved mechanism for ensuring successful reproduction.
PMCID:11881891
PMID: 40043121
ISSN: 2375-2548
CID: 5809752
Cardiovascular Disease and Cancer: A Dangerous Liaison
Newman, Alexandra A C; Dalman, Jessie M; Moore, Kathryn J
The field of cardio-oncology has traditionally focused on the impact of cancer and its therapies on cardiovascular health. Mounting clinical and preclinical evidence, however, indicates that the reverse may also be true: cardiovascular disease can itself influence tumor growth and metastasis. Numerous epidemiological studies have reported that individuals with prevalent cardiovascular disease have an increased incidence of cancer. In parallel, studies using preclinical mouse models of myocardial infarction, heart failure, and cardiac remodeling support the notion that cardiovascular disorders accelerate the growth of solid tumors and metastases. These findings have ushered in a new and burgeoning field termed reverse cardio-oncology that investigates the impact of cardiovascular disease pathophysiology on cancer emergence and progression. Recent studies have begun to illuminate the mechanisms driving this relationship, including shared risk factors, reprogramming of immune responses, changes in gene expression, and the release of cardiac factors that result in selective advantages for tumor cells or their local milieu, thus exacerbating cancer pathology. Here, we review the evidence supporting the relationship between cardiovascular disease and cancer, the mechanistic pathways enabling this connection, and the implications of these findings for patient care.
PMCID:11864891
PMID: 39781742
ISSN: 1524-4636
CID: 5800432
Substrate translocation and inhibition in human dicarboxylate transporter NaDC3
Li, Yan; Song, Jinmei; Mikusevic, Vedrana; Marden, Jennifer J; Becerril, Alissa; Kuang, Huihui; Wang, Bing; Rice, William J; Mindell, Joseph A; Wang, Da-Neng
The human high-affinity sodium-dicarboxylate cotransporter (NaDC3) imports various substrates into the cell as tricarboxylate acid cycle intermediates, lipid biosynthesis precursors and signaling molecules. Understanding the cellular signaling process and developing inhibitors require knowledge of the structural basis of the dicarboxylate specificity and inhibition mechanism of NaDC3. To this end, we determined the cryo-electron microscopy structures of NaDC3 in various dimers, revealing the protomer in three conformations: outward-open Co, outward-occluded Coo and inward-open Ci. A dicarboxylate is first bound and recognized in Co and how the substrate interacts with NaDC3 in Coo likely helps to further determine the substrate specificity. A phenylalanine from the scaffold domain interacts with the bound dicarboxylate in the Coo state and modulates the kinetic barrier to the transport domain movement. Structural comparison of an inhibitor-bound structure of NaDC3 to that of the sodium-dependent citrate transporter suggests ways for making an inhibitor that is specific for NaDC3.
PMID: 39622972
ISSN: 1545-9985
CID: 5780092
Oocytes with impaired meiotic maturation contain increased mtDNA deletions
Kofinas, Jason D; Seth-Smith, Michelle L; Kramer, Yael; Van Daele, Jessie; McCulloh, David; Wang, Fang; Grifo, Jamie; Keefe, David
PURPOSE/OBJECTIVE:Induction of meiotic competence is a major goal of the controlled ovarian stimulation used in ART. Do factors intrinsic to the oocyte contribute to oocyte maturation? Deletions in mtDNA accumulate in long-lived post mitotic tissues and are found in human oocytes. If oogenesis cleanses the germline of deleterious deletions in mtDNA, meiotically competent oocytes should contain lower levels of mtDNA deletions vs. meiotically arrested oocytes. We tested this hypothesis using a novel PCR assay for a deletion ratio in human oocytes derived from IVF. METHODS:among oocytes which matured to metaphase II (MII) vs. oocytes arrested at GV or metaphase I (MI). RESULTS:51.75% of oocytes reached MII, and 17% remained at MI. Mean mtDNADR in GV, MI and MII oocytes were 27.87%, 31.88% and 20.05%, respectively. The difference in deletion ratios between GV and MII and between MI and MII stages was statistically significant p < 0.001 and p = 0.034, respectively. Additionally, patient age was found to be positively correlated with time to Polar body extrusion (- 0.278 Pearson correlation). CONCLUSIONS:Oocytes with impaired meiotic maturation contain an increased load of mtDNA deletions. This is the first report of an association between the mtDNA deletion ratio and human oocyte maturation in vitro.
PMID: 39863755
ISSN: 1573-7330
CID: 5802772
lncRNA CARINH regulates expression and function of innate immune transcription factor IRF1 in macrophages
Cyr, Yannick; Gourvest, Morgane; Ciabattoni, Grace O; Zhang, Tracy; Newman, Alexandra Ac; Zahr, Tarik; Delbare, Sofie; Schlamp, Florencia; Dittmann, Meike; Moore, Kathryn J; van Solingen, Coen
The discovery of long non-coding RNAs (lncRNAs) has provided a new perspective on the centrality of RNA in gene regulation and genome organization. Here, we screened for lncRNAs with putative functions in the host response to single-stranded RNA respiratory viruses. We identify CARINH as a conserved cis-acting lncRNA up-regulated in three respiratory diseases to control the expression of its antisense gene IRF1, a key transcriptional regulator of the antiviral response. CARINH and IRF1 are coordinately increased in the circulation of patients infected with human metapneumovirus, influenza A virus, or SARS-CoV-2, and in macrophages in response to viral infection or TLR3 agonist treatment. Targeted depletion of CARINH or its mouse ortholog Carinh in macrophages reduces the expression of IRF1/Irf1 and their associated target gene networks, increasing susceptibility to viral infection. Accordingly, CRISPR-mediated deletion of Carinh in mice reduces antiviral immunity, increasing viral burden upon sublethal challenge with influenza A virus. Together, these findings identify a conserved role of lncRNA CARINH in coordinating interferon-stimulated genes and antiviral immune responses.
PMCID:11707381
PMID: 39773901
ISSN: 2575-1077
CID: 5779322
Characterization of tumour heterogeneity through segmentation-free representation learning on multiplexed imaging data
Tan, Jimin; Le, Hortense; Deng, Jiehui; Liu, Yingzhuo; Hao, Yuan; Hollenberg, Michelle; Liu, Wenke; Wang, Joshua M; Xia, Bo; Ramaswami, Sitharam; Mezzano, Valeria; Loomis, Cynthia; Murrell, Nina; Moreira, Andre L; Cho, Kyunghyun; Pass, Harvey I; Wong, Kwok-Kin; Ban, Yi; Neel, Benjamin G; Tsirigos, Aristotelis; Fenyö, David
High-dimensional multiplexed imaging can reveal the spatial organization of tumour tissues at the molecular level. However, owing to the scale and information complexity of the imaging data, it is challenging to discover and thoroughly characterize the heterogeneity of tumour microenvironments. Here we show that self-supervised representation learning on data from imaging mass cytometry can be leveraged to distinguish morphological differences in tumour microenvironments and to precisely characterize distinct microenvironment signatures. We used self-supervised masked image modelling to train a vision transformer that directly takes high-dimensional multiplexed mass-cytometry images. In contrast with traditional spatial analyses relying on cellular segmentation, the vision transformer is segmentation-free, uses pixel-level information, and retains information on the local morphology and biomarker distribution. By applying the vision transformer to a lung-tumour dataset, we identified and validated a monocytic signature that is associated with poor prognosis.
PMID: 39979589
ISSN: 2157-846x
CID: 5812702
Characterization of a cytokinin-binding protein locus in Mycobacterium tuberculosis
Yoo, Jin Hee; Santarossa, Cristina; Thomas, Audrey; Ekiert, Damian; Darwin, K Heran
Cytokinins are adenine-based hormones that have been well-characterized in plants but are also made by bacteria, including the human-exclusive pathogen Mycobacterium tuberculosis. Like plants, M. tuberculosis uses cytokinins to regulate gene expression. We previously established that cytokinin overaccumulation in M. tuberculosis results in a buildup of aldehydes produced during cytokinin breakdown. In plants, dedicated enzymes called cytokinin oxidases convert cytokinins into adenine and various aldehydes. Proteasome degradation-deficient M. tuberculosis, which cannot degrade the cytokinin-producing enzyme Log, accumulates several cytokinins and at least one cytokinin-associated aldehyde, resulting in increased sensitivity to nitric oxide and copper. We therefore hypothesized that M. tuberculosis encodes one or more cytokinin oxidases, and disruption of this enzyme might restore resistance to nitric oxide and copper in a proteasome-defective strain. Using a homology-based search, we identified Rv3719 as a protein with high similarity to a plant cytokinin oxidase. Deletion of this gene, however, did not restore nitric oxide or copper resistance to a degradation-defective mutant. Instead, we observed increased copper sensitivity when Rv3719 was deleted from either wild-type or proteasome-defective strains. Finally, we characterized Rv3718c, a protein encoded adjacent to Rv3719, and found that it bound a cytokinin with high specificity. Collectively, these data support a role for cytokinin activity in M. tuberculosis physiology that remains to be further elucidated.IMPORTANCENumerous bacterial species encode cytokinin-producing enzymes, the functions of which are almost completely unknown. This work contributes new knowledge to the cytokinin field for bacteria and reveals further conservation of cytokinin-associated proteins between plants and prokaryotes.
PMID: 40013803
ISSN: 1098-5530
CID: 5801182
Hypoalbuminemia increases risks for complications after surgical repair of nonunions and malunions
Lin, Charles C; Qureshi, Ibraheem; Anil, Utkarsh; Lin, Lawrence J; Leucht, Philipp
OBJECTIVE:The purpose of this study was to determine the association of hypoalbuminemia with adverse outcomes in patients undergoing surgical repair of nonunions or malunions of upper and lower extremity long bones. METHODS:DESIGN: Retrospective. SETTING/METHODS:Hospitals participating in American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) from 2005 to 2019. PATIENTS/METHODS:Patients in the ACS-NSQIP database with upper extremity and lower extremity fractures who underwent nonunion or malunion repairs and had preoperative serum albumin levels. Outcome Measures and Comparisons: Demographic variables, comorbidities and postoperative complications were collected and compared using t tests and chi squared tests. Multivariate linear regression models were used to assess complications, adjusting for variables such as age, sex, BMI, hospital length of stay, and operation time. RESULTS:Univariate analysis of 1640 total patients (338 [20.6%] with hypoalbuminemia and 1302 [79.4%] with normal albumin) showed patients with hypoalbuminemia had significantly increased 30-day mortality rates, increased lengths of stay, and returns to the operating room. Multivariate analysis showed patients with hypoalbuminemia had significantly greater odds for any complication (OR: 2.62; 95% CI [1.77, 3.84]; p < 0.001), surgical site infections (OR: 2.62; 95% CI [1.34, 4.99]; p = 0.004) and transfusions (OR: 2.77; 95% CI: [1.62, 4.69]; p < 0.001) compared to the normal albumin group. CONCLUSIONS:There was a significant difference in 30-day postoperative complications between patients with normal albumin levels and those who were hypoalbuminemic after surgical repairs of nonunions or malunions. Albumin level is a risk factor that should be monitored and counseled upon prior to surgical intervention for nonunion or malunion correction. LEVEL OF EVIDENCE/METHODS:Level III Retrospective Comparative Study.
PMID: 39998685
ISSN: 1432-1068
CID: 5800742
Cerebellar output neurons can impair non-motor behaviors by altering development of extracerebellar connectivity
Lee, Andrew S; Arefin, Tanzil M; Gubanova, Alina; Stephen, Daniel N; Liu, Yu; Lao, Zhimin; Krishnamurthy, Anjana; De Marco García, Natalia V; Heck, Detlef H; Zhang, Jiangyang; Rajadhyaksha, Anjali M; Joyner, Alexandra L
The capacity of the brain to compensate for insults during development depends on the type of cell loss, whereas the consequences of genetic mutations in the same neurons are difficult to predict. We reveal powerful compensation from outside the mouse cerebellum when the excitatory cerebellar output neurons are ablated embryonically and demonstrate that the main requirement for these neurons is for motor coordination and not basic learning and social behaviors. In contrast, loss of the homeobox transcription factors Engrailed1/2 (EN1/2) in the cerebellar excitatory lineage leads to additional deficits in adult learning and spatial working memory, despite half of the excitatory output neurons being intact. Diffusion MRI indicates increased thalamo-cortico-striatal connectivity in En1/2 mutants, showing that the remaining excitatory neurons lacking En1/2 exert adverse effects on extracerebellar circuits regulating motor learning and select non-motor behaviors. Thus, an absence of cerebellar output neurons is less disruptive than having cerebellar genetic mutations.
PMID: 39984491
ISSN: 2041-1723
CID: 5843182
Inhibiting mechanotransduction prevents scarring and yields regeneration in a large animal model
Mascharak, Shamik; Griffin, Michelle; Talbott, Heather E; Guo, Jason L; Parker, Jennifer; Morgan, Annah Grace; Valencia, Caleb; Kuhnert, Maxwell Michael; Li, Dayan J; Liang, Norah E; Kratofil, Rachel M; Daccache, Joseph A; Sidhu, Ikjot; Davitt, Michael F; Guardino, Nicholas; Lu, John M; Abbas, Darren B; Deleon, Nestor M D; Lavin, Christopher V; Adem, Sandeep; Khan, Anum; Chen, Kellen; Henn, Dominic; Spielman, Amanda; Cotterell, Asha; Akras, Deena; Downer, Mauricio; Tevlin, Ruth; Lorenz, H Peter; Gurtner, Geoffrey C; Januszyk, Michael; Naik, Shruti; Wan, Derrick C; Longaker, Michael T
Modulating mechanotransduction by inhibiting yes-associated protein (YAP) in mice yields wound regeneration without scarring. However, rodents are loose-skinned and fail to recapitulate key aspects of human wound repair. We sought to elucidate the effects of YAP inhibition in red Duroc pig wounds, the most human-like model of scarring. We show that one-time treatment with verteporfin, a YAP inhibitor, immediately after wounding is sufficient to prevent scarring and to drive wound regeneration in pigs. By performing single-cell RNA sequencing (scRNA-seq) on porcine wounds in conjunction with spatial proteomic analysis, we found perturbations in fibroblast dynamics with verteporfin treatment and the presence of putative pro-regenerative/profibrotic fibroblasts enriched in regenerating/scarring pig wounds, respectively. We also identified differences in enriched myeloid cell subpopulations after treatment and linked this observation to increased elaboration of interleukin-33 (IL-33) in regenerating wounds. Finally, we validated our findings in a xenograft wound model containing human neonatal foreskin engrafted onto nude mice and used scRNA-seq of human wound cells to draw parallels with fibroblast subpopulation dynamics in porcine wounds. Collectively, our findings provide support for the clinical translation of local mechanotransduction inhibitors to prevent human skin scarring, and they clarify a YAP/IL-33 signaling axis in large animal wound regeneration.
PMID: 39970235
ISSN: 1946-6242
CID: 5843082